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Abstract

In this paper, which is the second part in a series of two, we construct tree level baryon exchange
and resonance amplitudes for 7N /M B-scattering in the framework of the Kadyshevsky formalism.
We use this formalism to formally implement absolute pair suppression, where we make use of the
method of Takahashi and Umezawa. The resulting amplitudes are Lorentz invariant and causal. We
continue studying the frame dependence of the Kadyshevsky integral equation using the method
of Gross and Jackiw. The invariant amplitudes, including those for meson exchange, are linked to
the phase-shifts using the partial wave basis.
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I. INTRODUCTION

In the previous paper, referred to as paper I [1], we have given a motivation for con-
structing a pion-nucleon (wN) scattering, or more generally a meson-baryon (M B) scat-
tering, model. We have given the main ingredients of the model and, besides others, the
(theoretical) results for meson exchange processes.

In this paper, referred to as paper II, we present the results in the baryon sector. We
construct tree level amplitudes for baryon exchange and resonance or, to put it in other
words, u- and s-channel baryon exchange diagrams in the Kadyshevsky formalism [2-5].

The Kadyshevsky formalism is equivalent to Feynman formalism, since it can be derived
using the same S-matrix formula. The main features for exploiting the Kadyshevsky formal-
ism is that all particles are on the mass-shell at the cost of an extra quasi particle, which
carries four momentum only. A three dimensional Lippmann-Schwinger type of integral
equation comes about naturally, without any approximations as for instance in [6] and [7].
Especially at second order, this formalism provides a covariant, though frame dependent
[24], separation of positive and negative energy contributions. In this way it is a natural
basis for implementing pair suppression, which may also be interesting for relativistic many
body theories.

In [6] pair suppression is assumed by considering positive states in the integral equation
only. Here, we implement pair suppression formally, and to our knowledge for the first time,
in a covariant and frame independent way. This is done by using a method based on the
Takahashi-Umezawa (TU) method [8-10], see also paper I. In paper I we studied the n-
dependence of the integral equation using the method of Gross and Jackiw (GJ) [11]. This
we will continue here.

In section II we start with introducing the concept of pair suppression. After discussing
how it can be implemented formally we apply it to 7N system. The amplitudes are calculated
in section III. In section IV we use the helicity basis and make a partial wave expansion to
introduce the phase-shifts. We show how the amplitudes are related to these phase-shifts.
This is done for the entire model.

II. PAIR SUPPRESSION FORMALISM

To understand the idea of pair suppression at low energy, picture a general meson-baryon
(MB) vertex in terms of their constituent quarks (see figure 1). As stated in [12] every time
a quark - anti-quark (¢q) pair is created from the vacuum the vertex is damped. This idea
is supported by [13] who’s author considers a vertex creating a baryon - anti-baryon (BB)
pair in a large N, SU(N) theory [25]. Such a vertex is comparable to figure 1(b), but now
N —1 pairs need to be created. It is claimed in [13] that such vertices are indeed suppressed.
Although it is questionable whether N = 3 is really large, we assume that pair suppression
holds for SU(p)(3) theories at low energy.

Now, one could imagine that this principle should also apply for the creation of a meson -
anti-meson (M M) pair and therefore pair suppression should be implemented in the meson
exchange sector (paper I). For the reason why we have not done this one should look again
at figure 1 and consider the large N, SU(N) theory again. For the creation of a MM pair
at the vertex only one extra ¢ pair needs to be created instead of the N — 1 pairs in the BB
case and is therefore much likelier to happen. Going back to the real SU(ry(3) the difference
is only one ¢g pair, nevertheless we assume that a M M pair creation is not suppressed.
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FIG. 1: (a) MMM (MBB) vertex and (b) M BB vertex

Also from physical point of view it is nonsense to imply pair suppression in the meson
sector. In order to see this one has to realize that an anti-meson is also a meson. So, assuming
pair suppression in the meson sector means that a triple meson (M M M) vertex is suppressed,
which makes it impossible to consider meson exchange in meson-baryon scattering as we did
in paper 1. From figure 1(a) we see that the M M M vertex is of the same order (in number
of qq creations, as compared to figure 1(b)) as the meson-baryon-baryon (M BB) vertex in
SUr)(3). So, suppressing the MMM vertex means that we should also suppress the M BB
vertex and no description of M B-scattering in terms of M B vertices is possible at all!

This does not mean, however, that there’s no pair suppression what so ever in the meson
sector. As can be seen from the amplitudes in paper I we only considered M BB vertices,
whereas in principle also M BB vertices could have been included. The latter vertices are
not considered using the argument of pair suppression as discussed above. We will come
back to this later.

Since we suppressed the M BB vertex it means that pair suppression should also be active
in the Vector Meson Dominance (VMD) [14] model describing nucleon Compton scattering
(YN — vN). From electron Compton scattering it is well-know that the Thomson limit is
exclusively due to the negative energy electron states (see for instance section 3-9 of [15]).
However, since the nucleon is composite it may well be that the negative energy contribution
is produced by only one of the constituents [16] and it is not necessary to create an entire
anti-baryon.

The suppression of negative energy states may harm the causality and Lorentz invariance
condition. Therefore, the question may raise whether it is possible to include pair suppression
and still maintain causality and Lorentz invariance. The following example shows that it
should in principle be possible: Imagine an infinitely dense medium where all anti-nucleon
states are filled, i.e. the Fermi energy of the anti-nucleons pr = oo, and that for nucleons
pr = 0. An example would be an anti-neutron star of infinite density. Then, in such a
medium pair production in 7 N-scattering is Pauli-blocked, because all anti-nucleon states
are filled. Denoting the ground-state by |Q2), one has, see e.g. [17],

Sp(x—y) = —i(QT()P)]IQ) .
which gives in momentum space [17]
_ ]5+M{ 1 —np(p) n nr(p)

Sr(p;pr,Dr) =

l—np(p)  nr(p) }
po+ E,—ic po+ E,+ic]




At zero temperature T' = 0 the non-interacting fermion functions ng, np are defined by

07 |p| > pr ’ 07 |p| >ﬁF

In the medium sketched above, clearly ng(p) = 0 and ng(p) = 1, which leads to a propagator
Sret(p; 0,00). This propagator is causal and Lorentz invariant.

The above (academic) example may perhaps convince a sceptical reader that a perfect
relativistic model with ’absolute pair suppression’ is feasible indeed.

As far as our results are concerned we refer to section III, where we will see that inter-
mediate baryon states are represented by retarded (-like) propagators, which have the nice
feature to be causal and n-independent. We, therefore, have a theory that is relativistic and
yet it does contain (absolute) pair suppression.

A. Equations of Motion

Consider a Lagrangian containing not only the free fermion part, but also a (simple)
coupling between fermions and a scalar

L = Efree + EI
_ (11— 7 <— _
=3 (57 -39 -M)prgire o (1)
The Euler-Lagrange equation for the fermion part reads

(i — M) = —gl'p- ¢ (2)

In order to incorporate pair suppression we pose that the transitions between positive and

negative energy fermion states vanish in the interaction part of (1), i.e. YD) =
PP = 0. So, we impose absolute pair suppression. From now on, when we speak
of pair suppression we mean absolute pair suppression, unless it is mentioned otherwise. Of
course it is in principle possible to allow for some pair production. This can be done for in-
stance by not eliminating the terms (0T~ and ()T in (1), but allowing them with
some small coupling ¢’ < ¢g. This, however, makes the situation much more complicated
and is not worked out here.

Since half of the term on the rhs of (2) finds its origin in such vanished terms, it is reduced
by a factor 2 by the pair suppression condition.

Making the split up ¥ = ) + () which is invariant under orthochronous Lorentz
transformations, in (2) we assume both parts are independent, so that we have

(i@ = M)p'D = S g, (32)

(@@= M)pD = —STv) 6. (3b)

One might wonder why we did not consider independent positive and negative energy
fields from the start in (1). Although this would not cause any trouble in the interaction
part (L£;) it will in the free part. The quantum condition in such a situation would be



{vF(2), 7P (y)} =i6*(x —y). This is in conflict with the important relations between the
positive and negative energy components

{¥D@3TW] = @@+ M)A (@ —y) |
{#9@ 30w} = - @+ M)A —y), (4)

which we do need. Therefore we don’t make the split up in the Lagrangian, but in the
equations of motion.

The assumption that both parts ¢(*) and (=) are independent means that besides the
anti-commutation relations in (4) all others are zero.

In order to incorporate pair suppression in the meson sector (see paper I) the only thing
to do is to exclude the transitions ¥(HI'(~) and 1()T4*) in the interaction Lagrangians.
By doing so, only u and u spinors will contribute. Therefore, only these spinors are present
in the results for meson exchange (paper I).

For baryon exchange and resonance diagrams the implications for pair suppression are less
trivial. We, therefore, discuss how pair suppression can be implemented in these situation
in the following subsections.

B. Takahashi Umezawa Scheme for Pair Suppression

In order to obtain the interaction Hamiltonian in case of pair suppression we set up the
theory very similar to the TU scheme [8-10] introduced and applied in paper 1. Since we
only make the split-up in the fermion fields, the scalar fields are unaffected and therefore
not included in this subsection.

We start with defining the currents

oL, oL, >

Jua(@) = <_a¢<i> (0) 00, ()

Solutions to the equations of motion resulting from a general (interaction) Lagrangian are
Yang-Feldman (YF) [18] type of equations

W9a) = @)+ 5 [ dly Dulw) 9+ M) B — o)

()

X A(r —y) - Jy oY) - (6)

Here, we have chosen to use the retarded Green functions again, this, in order to be close
to the treatment of paper I.
Furthermore, we introduce the auxiliary fields

Vo) = 0O Fi [ D) B+ M) A=) Gyeay) (O

—00

Combining these two equations ((6) and (7)) we get

W) = 0 a/o) 4 5 [ty D) @9+ 30) e = )| A = ) )

i% / d'y O[n(x — y)|Da(y) (i@ + M) AD (z — y) - juw o (y) - (8)

5



The factor 1/2 in (6) is essential. This becomes clear when we decompose A*(x — y) =
ZA(x—y)+ 2 AW(z —y) in (7). The first part (A) combines with (6) to the second term
on the rhs of (8) and the second part (A®)) gives a new contribution to ™) as compared
to 1) in the original treatment. We see that if we add zp(ﬂ and ¢(*) we get back the 1 in
the original treatment, again. This makes the factor 1/2 difference in the first part of (8)
easier to understand.

Similar to the treatment in appendix C of paper I, it can be shown that *)(x) and
Y ®)(z, o) satisfy the same commutation relation and that the unitary operator connecting
the two is related to the S-matrix. Following similar steps the defining equation for the
interaction Hamiltonian is

{w&)(a:),m(y;n)} = U'o] [Da(y)(£) (i@ + M) A*(z = y) - Gy o ()] Ulo] , (9)

Having discussed the formalism to implement pair suppression, now, we're going to apply
it.

C. (Pseudo) Scalar Coupling

In the (pseudo) scalar sector of the theory including pair suppression we start with the
following interaction Lagrangian

Lr=gp Ty ¢+ gyp T - ¢, (10)

26] where I' = 1 or I = 47°. We will not use the specific forms for I' until the discussion of
the amplitudes in section III. This, in order to be as general as possible.
From (10) we deduce the currents according to (5)

Jeoa = (—9T¥®-$,0) .
Jou = (mg9Ty™ —gupOry o) . (11)

The fields in the H.R. can be expressed in terms of fields in the I.R. using (8)

W) = vw/o) 7 D [ty blnte — )9+ 30) AV - )

x Ty (y) - oly) | (12a)
$() = dlefo) + / 0y [Da(y), ez — )] A — 1) - Gy a(v)
= ¢(z/0) . (12b)

Equation (12a) was found by assuming that the coupling constant is small and considering
only contributions up to order g, just as in paper I.



With the expressions (12a) and (12b) and the definition of the commutator of the
(fermion) fields with the interaction Hamiltonian (9) we get
[0 (@), Hilyin)] = —g (i + M) AT (z — y)L D (y) - 6(y)

—l—% (i@ + M)At (z — y) /d4zF9[n(y — 2)]

x <z‘¢9y n M) AWy —2) Ty (2) - ¢(2)e(y)
[0 (@), Hi(y;n)] = g (i@ + M)A (z— y)T T (y) - 6(y)
0@+ M) A —y) [ T oln(y )
< (19, + M) AV = HTOE) - 6(2)ol) . (13)

Here, we have not included the commutator of the scalar field ¢ with the interaction Hamil-
tonian, because (13) already contains enough information to get the interaction Hamiltonian
Hi(z;n) = —gp®TYH 6 — gpOTY) - ¢
: 2

+ 2 [ty [5716) 0inte ~ ] 69, + ) AV ) [r06]

2

In (14) we see that the interaction Hamiltonian contains terms proportional to AM (z — y)
which are of order O(g?). These terms will be essential to get covariant and n-independent
S-matrix elements and amplitudes at order O(g?).

If we would include external quasi fields in interaction Lagrangian (10), then the terms of
order g% in the interaction Hamiltonian (14) would be quartic in the quasi field. Two quasi
fields can be contracted

X(@)x(@)x(y)x(y) = x(@)0[n(z —y))x(y) - (15)

_ig” / d'y [0T 6] Bln(e — )] (9, + M) AV ) [LeOo] . (14)

So, the terms of order g* get an additional factor f[n(x — y)]. However, since these terms
already contain such a factor, we make the identification 8[n(x —y)]|0[n(z—y)] — 0n(x—y)].
Therefore, all relevant 7NN terms in (14) are quadratic in the external quasi field, just as we
want. This argument is valid for all couplings.

D. (Pseudo) Vector Coupling

Here, we repeat the steps of the previous subsection (section II C) but now in the case of
(pseudo) vector coupling. The interaction Lagrangian reads

e f -0

Ly ==y 0+ T, 0t (16)
where I', =7, or I', = 757,. From (16) we deduce the currents
: f (+)
- (-2Lr 9", 0
T a ( o u P .0 ,
Jo. = (0 _I YT pH) — i¢(—)p P (17)
b,a ’ m, o M o



The fields in the H.R. are expressed in terms of fields in the I.R. as follows

P () = P (z/o) T f /d4y6 )] (@@ 4+ M) AD (2 — )
x T ™M (y) - 0"9(y) (18a)
¢(z) = ¢(z/o), (18b)
09(a) = [00(z,0)],;, ~ 7= w T ()0 - DY (o)
_mi n* ) (z)n - Ty () (18¢)

The commutators of the different fields with the interaction Hamiltonian are

[ (@), Hily;n)] = mi (i + M) A*(z —y) { B eI
+i n - D) - Ty + s n - T Op - Ty

™ ™ Y

o (D4 M)A (o =) [ T by — =)

x (i, + M) AWy = 2) T, 0 (2) - 6 0(2)0"6(y) |

0@ M) = ~L @4 a0 A=) [ -1 0%
o O G T 4 L O G Ty
My My y
. 2
@+ M)A @ —y) [at T, bty )

x (i, + M) AD(y — )T, 6O(2) - 0°0(2)0"0(y) . (19

)



and from these equations we deduce the interaction Hamiltonian

f DT 64 - gty — f PO, - 99

mxq

H[(x; n) =

Cmae
+2}}:2 [W” ' MW)T * 257% [W" ' M’(_)r

™

_{_51_22 [Wn : [‘¢(+)} [Wﬂ . Fw(_)}

™

v 2@ 7{; / d'y [T, 6o — )] (9 + M)

X A(l)(x —9) [FV¢(+)3V¢]y

oL [y [50,00] olnte -] @9+ )

x AV (z —y) [LyOovg] . (20)

Asin (14) there are also terms proportional to A(V)(z—y) quadratic in the coupling constant.
Also, (20) contains contact terms, but they do not contribute to mN-scattering.

E. wNAs3 Coupling

At this point we deviated from [6] as far as the interaction Lagrangian is concerned. For
the description of the coupling of the A3, which is a spin-3/2 field, to 7N we follow [19, 20]

by using the gauge invariant interaction Lagrangian
Lr = ggie™’ (@\Iﬂj)) 1570 (D500) + gi PPz <aulIJz(/+)> (059)
001 €7 (9,97 ) 75708 (058) + gt @ 570 (0,87 ) (09) - (21)

Here, ¥, represents the spin-3/2 Ags field. As is mentioned in [19] the ¥, field does not
only contain spin-3/2 components but also spin-1/2 components. By using the interaction
Lagrangian as in (21) it is assured that only the spin-3/2 components of the As; field couple.

From (21) we deduce the currents

{0, — ggi €7 ((9“‘1’5” ) 157%™ = ggi Py, (%‘I’(ﬁ)

jqb,a(x) =
— ggi € <8M‘I’(;)> 1570 ) = ggi € PP Tz, <3M‘I’f,)>}
jz/;(i),a(x) = [_ggi Euyaﬂ’75’ya (au‘Il£+)> (aﬁ¢) 70]
Faa@) = [0.=g5 @ P50 (059)] (22)

To avoid lengthy equations we express the commutators of the various fields with the inter-



action Hamiltonian in terms of fields in the H.R. (9)

— —
(o). Halyin)| = U)o~ )T [ (9,7) i
_ggi €uyaﬁ¢(+)757a (aplIly(j_)) - ng' e,uzzaﬁ (a,u‘Ij,(/_)) 757041:0(7)

—Ggi guvaﬂw%,ya (3#\111(/—))} U—l(o_) 7

Y

A0 Halyin)| = U(@)E) (00, + 30) A% =) [ 0,0) 030)] U0

[@f(xm(y;m} — U(0)(2) (i@, + Ma) (—)

1 29,0, 1 , . . -
(0= 300+ 3 = 3 Owidh = 9,2) ) A% = )7

< (g0 P27 035)) U7N0) (23)

where the fields in the H.R. are expressed in terms of fields in the [.R. using (8)

W) = o wfo) £ 5 [ dly blale )7+ MDAV @~y
X Ggi Guyaﬁ757a [(au\ygi)) (aﬂ¢>]y )
0,8(x) = [0,6(x, )], s
—Ygi e (8 > 75%‘2/}“)”#3 — Ygi Ewaﬁan%%z ((’%‘Ill(,*)) ng

—Jgi Euuaﬁ (6 v ) 757a¢(_)nﬁ — Ygi E'uyaﬁnpqvb(_)/%/ya (8M\IJI(/_)) ng,
3pq!£i)(x) = [GPQ/Li)(x,U)}

\_/‘

z/o

-1-% [(Z(?x + Ma) npny + 1t (i0,ny + n,i0,) — 2pn,nyn - i@]

1
X (g/u/ - g 7;/7”) epya5757a¢(i) (aﬁ¢)
:FT /d yOn(z —y)] (i@, + Ma) |:g;w 3 %%}

x 0,0, A0 (& — y) [ y57a0™) (959)] - (24)

Here, we have already used that 8p\IlLi) (x) always appears in combination with e?**?. There-
fore, we have eliminated terms that are symmetric in p and pu.
With these ingredients we can construct the interaction Hamiltonian. Because it contains
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a lot of terms we only focus on those terms that contribute to m/N-scattering
H[(x; n) =
= _ggi Euuaﬁ (au\lll(/+)> 757a¢(+) (8g¢) - ggi Euyaﬂ¢(+)757a (aulpz(j—’—)) (aﬁgb)

—Ggi €77 (WI’(”*)) V57t ) (950) — ggi €570 (0,157) (90)
2
9oi e . . .
—79 e P sy (00 {(Z@x + Ma) nyny + 9t (i0,m, + nyi0y)
. ]- /V/a/ !
— 2%71#”#’” ’ Za:| o' — 5 %/YVI> ¢ ’ 75%/1#(+) <8g/¢)
_gﬁi

- e’“’o‘ﬂm%%é (950) [(w?x + Ma) npnye + 1 (i0umy + 1,10,

. 1 "ol 3 _
— 27/'/”#”#’” . 28] (gw/ - 5 ’71/71/’) et s 75’Ya’w( ) <85/¢)
- 2
194 vo 1
+Tg / d*y [e“ P 574 (%@L Oln(z —y)] (ig, + Ma)
]_ 1,0 1l
X (g -3 %%I) 0,0, AW (x — y) [e“ VB ey (@s«b)} )

- 2
Zggi

2 [ aty [ 030)] inta )] (D, + Ma)

1 SNy, _
X (gm/’ -3 %%/) 0,0 AW (z — y) [6“ VB iy (%ﬁ)h

ITI. S-MATRIX ELEMENTS AND AMPLITUDES

(25)

Since the Kadyshevsky rules as presented in appendix A of paper I do not contain pair
suppression, we’re going to derive the amplitudes from the S-matrix. The basic ingredients,
namely the interaction Hamiltonians, we have constructed in the previous section (sections
IIC, IID and ITE) for different couplings. As in paper I we also consider here equal initial
and final states, i.e. 7N (M B) scattering. For the results for general M B initial and final

states we refer to appendix A
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A. (Pseudo) Scalar Coupling

For the pseudo scalar coupling case we collect all g? contributions to the S-matrix (see

(14))
S = (=i [ dtad'y 8ot - p)IHs()Haly
= —g* [ dtad'yblnt ) [FTTT6] 9+ 20) A~ y) [rP]
SO = (=) / dhaHy ()

2

_ % / drd'y [W Fqb]x@[n(x — )] (i@, + M) AY (z — y) [Fw)as] . (26)

Y

which need to be added

: 2

S® 4 5M — —% / dizdly [W w] Oln(z — y)] (id + M) A(z — y) [w(ﬂqs} . (27)

x y
We see here that indeed the A()(z — 5) propagator in the interaction Hamiltonian (14) is
crucial, since it combines with the A*)(x —y) propagator (26) to form a A(z —1) propagator
(27). Together with the f[n(x —y)] in (27) we recognize the causal retarded (-like) character
as we already mentioned in the section II. The S-matrix element is therefore covariant and
if we analyze its n-dependence using the GJ method [11] as in paper I we would see that it
is n-independent (for vanishing external quasi momenta, of course).

Also we notice that the initial and final states are still positive energy states. We started
with a separation of positive and negative energy states in section II and after the whole
procedure this is still valid for the end-states. However, we have to notice that inside an
amplitude, negative energy propagates via the A(x —y) propagator, but this is also the case
in our example of the infinite dense anti-nucleon star of section II. Moreover, in [6] pair
suppression is assumed by only considering positive energy end-states, and this is what we
have achieved formally.

All the above observations are also valid in the case of (pseudo) vector coupling and the
7N Ass coupling of section III B and section 111 C, respectively as we will see.

The last important observation is that in (27) it does not matter whether the derivative
just acts on the A(x — y) propagator or also on the #[n(z — y)] function [27]. Therefore,
the P-method of paper I can be applied, although it is not really necessary. This situation
is contrary to ordinary baryon exchange, where the P method can only be applied for the
summed diagrams, as explained in paper I.

The summed S-matrix elements (27) lead to baryon exchange and resonance Kadyshevsky
diagrams, which are exposed in figure 2. We're going to treat them separately.

The amplitude for the (pseudo) scalar baryon exchange and resonance resulting from the
S-matrix in (27) are

92 d"{l —
My (u) = ) /mu(ps) {F (JI"DUJFMB)F} u(ps)A(Py) ,
Manls) = 5 [ B a8s) [P P+ M) T ) AP (28)
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FIG. 2: Baryon exchange (a) and resonance (b) diagrams

Here P; = A; + nk — nk; and A(P;) = e(P)§(P? — M3) (i = u,s). The A; stand for

1
A, = §(p’+p—q’—q) ,
1
A, = §(p’+p+q/+Q) : (29)

After expanding the 6(P? — M3)-function the x; integral can be performed
1

0(P; = M) = ———= (0(k1 — &) + (k1 — K1)
K1 — Ky |
The €(P?) selects both solutions with a relative minus sign. This yields for the amplitudes
S gg‘ /. 1
M7, (u) = = u(p's') | M+ Mp — @+ kip| u(ps ,
2
1
MES(w) = I8 G/ 'Y IM — Mg — Q@+ k] u(ps ,
2
1
MS (s) = 95 a@'s') [M + Mg + Q-+ ~if] u(ps ,
5a(5) = 50O/ M+ Mo+ @t Rl u(ps) iy
2
1
MEE(s) = 25 a(pls') [M = Mp + Q-+ o] u(ps) .G

(As-n+R)? — A2 +ic

where S and PS stand for scalar and pseudo scalar, respectively. Taking the limit of k' =
k=0 1in (31) we get

2
gs _; 1 1
M2 = == M+ Mg — —_—
o0(t) 2 w(p's') (M + M @]Mps)u—M%-l-ia’
2
Jpo 1
MO%S(U) = —1235 u(p's’) [M — Mp — @ u(ps) Py v
B
2
gS — )] 1
MS = == M+ M —_—
onls) = 5 alp's) M+ M+ @uips) T—ym=s
2
Jpo 1
MES(s) —1235 a(p's’) [M — Mp + @ u(ps) P v (32)
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which is a factor 1/2 of the result in [6]. This factor is because of the fact that we only took
the positive energy contribution. This difference can easily be intercepted by considering an
interaction Lagrangian as in (10) scaled by a factor of v/2 and eventually identifying g/v/2
as the physical coupling constant. We stress here that although we have included absolute
pair suppression formally, we still get a factor 1/2 of the usual Feynman expression.

In paper I we studied the n-dependence of the (approximation of the) Kadyshevsky
integral equation using the GJ method

My = M + /dn M Gl My

9 oMy oMy e o OM,
PO s Moy = PO + P / dr {—ano; Gl Mo+ Mg Gl —— (33)

Important was that the integrand in the second line of (33) is of the form

/dli k h(k)G, , (34)

and in some cases a phenomenological ”form factor” is needed

Fr) = ( e - (H)5>NN . (35)

For the details we refer to paper I. Whether (34) applies and (35) is necessary we need to
check for every exchange and resonance process.

In order to do so in the case of (P)S baryon exchange or resonance we take a closer look
at the denominators in (31)

(A;-n+7)? — A2 = A2 — ME+2A; ni + &> . (36)

From this we conclude that all n-dependent terms in (31) are proportional to &, therefore
differentiating (31) with respect to n® will yield a result linear proportional to . If we would
only consider (P)S baryon exchange or resonance in the Kadyshevsky integral equation, then
we indeed would have a situation as in (34). Looking at the powers of , s in (31) we see
that h(x) in (34) will be of the order O(Z) and the phenomenological ”form factor” (35)
would not be necessary.
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B. (Pseudo) Vector Coupling

The g contributions of (pseudo) vector coupling in the second and first order of the
S-matrix are

S® = (—)? / d*zd*y O[n(z — y)H;(z)H(y)
_ _?{1_22 / dad'y bln(x — )] [0FTT, (0%0)] 9+ M)

™

x At (z —y) [Ty (079)]

SO = (=) / dtaHy ()

_ / d'ad'y [$OL, (99)| Oln(a —y)) 1§+ M)

2
2mz

y Y

x A (z —y) [C,o (9)] (37)
Adding the two together
. 09 -
S® 450 = —2% / d'zd'yb[n(z — y)] [W)ru (auqﬁ)} (19 + M)
x Afz —y) L™ (279)], (38)

leads again to a covariant, n-independent result (k' = k = 0). See the text below (27) about
this issue and other important observations.

The two Kadyshevsky diagrams resulting from (38) are the same as shown in figure 2.
The amplitudes that go with them, in case of (pseudo) vector coupling, are

My (u) = S / o Ws’){<F-q)<Fu+Ms)(F~q’>} u(ps)A(PR,)

2m2 ) Ky +ie
Maals) = o [ atrs) [y B+ 21 € )| aponR) (39

where P; and A(P;) are defined below (28). As far as the k; integration is concerned we
take similar steps as in (30).
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After some (Dirac) algebra the amplitudes in (39) become

Uprg + Upg ) + 2M )

2m?2 2(

™

MY, () = 2L ags) {— (M — Mg) <_M2+1
——(n’—ﬁ)(p’—p)-n+%(f;’—ﬁ)[¢,@]—%(n'_ﬁ)2)
5 (g = 222) (@ 5 = )
g (g = 222) (= 5= )

it

z (—(p' —p)n@+2Q - n @+ M~ 9 (tprg +qu’))} u(p)
X L 7
(A, -n+R)?— A2 +ic

MEV@) = L2 a8) [ 01 4 Ma) (<007 4§ G+ ) + 2200

+
&

1 / / 1 / 1 / 2
5K =R 0 =)k (R @ 5 (6 = )

g (i = 322) (@ 5 (= )
g (g = 222) (@ 5 = )
,

4R <—(p/—p) nQ+2Q-nQ+ M2¢——(upq+upq))} u(p)
X<Au.n+/‘s;—A3+ia’

(\]

[\DI»— [\DI»—*

M) = ) | = (0 = M) (<0824 5 (s + ) — 2000
W =R W =) 0= 3 R 5 ()
3 (s = 32) (@4 50 = )
3 (o =3 (= 504 = )

+5 ((p'—p) @ +2Q-n Q+ My —%(qu +5pq))}“(p)

1
X 2 R
(Ag-n+R)"— A2+ e

M»SX(S) = gp‘g u(p's’) {_ (M + Mp) (_M2 + % (Spg + Spg) — 2M Q)

W =R W =)= 3 =R 5 ()

% (syg — M) (@+ %1@4 — k) %)
+% (8pg — M) (Q— % (K= x) ”i)

R ((P'—p) Q+2Q-n Q+ M —%(qu +qu)ﬂu(p)



Here, (P)V stands for (pseudo) vector. Taking the limit ' = x =0

Mgy(u) = 2‘222 u(p's’) { — (M — Mp) (—M*+u+2M@Q) — (u— M?) @} u(p)

™

1
X
u— M3Z +ie

)

MEY (u) = %ﬂ(p's’) [— (M + Mp) (—=M? +u+2M@) — (u— M?) @} u(p)
1

Xu—M]23+z'€

Mgy(s) = Jv u(p's’) [— (M — Mp) (—M?*+ s —2M@Q) + (s — M?) @] u(p)

2m?2
" 1
s— M3 +ie
2
— éf;‘; a(p's’) [— (M + Mp) (—M2+s—2M@) + (S—MQ) @] u(p)
y 1
s— M3 +ie

Y

Y

, (41)

where we, again, get factor 1/2 from the result in [6] for the same reason as mentioned in
section IITA.

Studying the n-dependence of the amplitudes (40) in light of the n-dependence of the
Kadyshevsky integral equation as before (section IIT A), we see that, again, all n-dependent
terms in (40) are linear proportional to either k or x’. Therefore, when we would only con-
sider (P)V baryon exchange or resonance in the Kadyshevsky integral equation, we would,
again, find ourself in a similar situation as in (34), when studying the n-dependence. How-
ever, looking at the powers of k and " in (40) we notice that the function h(k) in (34) is
of higher order then O(Z;). Therefore, the phenomenological ”form factor” (35) would be
necessary.
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C. wNAss Coupling

As far as the mNAgs3z coupling is concerned we find the following gﬁi contribution in the
second and first order of the S-matrix from (25)

g2 _ (_¢)2/d4xd4y9[n(a:—y)]HI(f)HI(y)
:_ﬂ;/ﬁ%wyﬂmx—yﬂFW”%?%%@whaﬁ%@@+Mu>
X A A (o =) [ 95700 D00]
SW — @4)/}#xnﬂm)
= [ ataaty [ 50,009] Ot~ )ou0 9+ M)
X (gw/ - é%w) AW (z —y) [6“'”'“'5'75%/1/}(“35@]y

ig2 _
+%%%Wwwﬁ%%%d{@a+MM”WW+¢WM@AJ@m0

X 1 "ol Bl
- 2%“#”#'“ ) Za:| (gl/u/ - § 71/71/’) [EM g 757a’w(+)85’¢] ) (42)
where
1 20,0, 1 . )
A;w = - {gm/ - § VYo + 3;\22 - m (7u26u - 'Yuzau)} . (43>

Because of the anti-symmetric property of the epsilon tensor all derivative terms in (43) do
not contribute.
Upon addition of the two contributions in (42) we find

- 2
_YYgi

, 1
5(2) + S(l) = 5 /d4asd4y [EMVQB¢(+)757aaﬂ¢]x auau’ (7/@ + MA) <guy’ - g 71/71/)

< Oln(x = y)] Az — ) | 3 00 (44)

Again, we have a similar situation for the S-matrix element as in section III A. Therefore,
we refer for the discussion of (44) to the text below (27).

A difference of this S-matrix element as compared of those of the forgoing subsections
(sections IIT A and IIIB) is that the derivatives do not only act on the A(x — y) propagator
in (44), but also on the @[n(x — y)]. Therefore, the P method of paper I can be applied. Of
course this is obvious since this method was introduced in order to incorporate terms like
the second term on the rhs of S in (42).

As in the previous subsections (sections III A and III B) two amplitudes arise from this S-
matrix: Ass exchange and resonance, whose the Kadyshevsky diagrams are shown in figure
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2. The amplitudes are

2
9ygi dr a3~ D D 7
Mos() = =% [ )00 (P), (), (Pt M)

1 /V/a/ !
X (gw’ T3 /VV'VV’) A(P,) € 7 70’75q,/@’u(p3) )

2
_ Y4 dk uvaB=( 1.t I (D D 7
Mew(s) = == / e O (), (Br) (Bt Ma)
1 N1
X (guu’ - g ’VV/YV’) A(Ps) evep 70/’75(],3’u(p8) ) (45>

where P, = P, + nky, i =u,s . P; and A(F;) are as before.

Performing the x; integral is in this situation even simpler then in the previous cases
(section IIT A and IIIB). As can be seen from (30) the A(F;) in (45) selects two solutions
for x; (with a relative minus sign, due to €(P?)), which only need to be applied to the quasi
scalar propagator 1/(k; + ic). This, because the P is xj-independent. Contracting all the
indices in (45) the amplitudes become

MR/H(U) = _% a(p/sl) l(;pu + MA) (sz (q/ ' Q) - %Pjgﬁl - éPug (Pu : q/)
+oPd (Poa) =3 (Pood) (P Q))} u(ps)
1

X(Au-n+R)2—A3+is ’
My(s) = —% u(p's) l(l}”s + My) (Pf (' -q) — = P'd— %K{Z’ (P - q)
+

P (Prd) =3 (Pood) (P

»
'Q
~—
N———
|
S
)
i
oY

Wl

1
X —\2 . (46)
(As-n+R)"— A2 +ice
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which leads, after some (Dirac) algebra, to

2
9gi _ | - _
Manlt) = ~ 2 a/s) |5 P2 O+ Ms = @ i) (2e” = )

3 P2 (O M2 4+ 5 g 3

N | —

b3 oty = 22— 4§+ i)

_1_12 (p3 i+ % ($p9 — M2 — 2m?) — % dd+ MM%@ ( —d4m?
FSpq — Upg + tyrq — 2R(D' — p) - n+4Rn - Q — (K° — k) )
—i—% (Pf d + % (M? = upy) — % dq + MAF&?M,) ( — 4m’
+8pg — Uprq +tgq + 28(0 —p) -n+4Rn - Q + (K7 — k%) >
—i (M + Ma — Q-+ ’?”ﬁ) ( —4m® + Sy — Upg + Ly

—2/{(p'—p)-n+4lin-Q—(/{’2—/{2)) (—4m2—|—qu

—Upg + tyq + 2R(p — p) - n+4kn - Q + (k”* — K?) )] u(ps)
1
(A -n—+R) — A2 4’

X
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2
i 1 - _
Manls) = =2 aly's) | P2 (O + Ma + Q-4 ) (2 — 1)

-3 P ((M+MA)¢’¢—% (spa = M%)

1 _
~ 5 (upq/ +tyq — M? — 4m2) d+ mM’gj)
1 _ M M
D) (P82¢/ + TA (M2 +2m?* — qu/) + TA dd' + MA“W{) (4m2

+8pq — Upq — tgq + 2E() — p) - n+4Rn - Q + (K7 — K?) >
g (P4 2 (s 202) 4 22 4+ Mg )
FSpg = Upy — tyg — 2R(p" —p) -n+4kn - Q — (/42 N K2) )
o (34 0 @ ) (4 4 syt~ 1
—2R(p' — p) -n+4kn - Q — (k”* — /{2)) (4m2 + Spq

— Upg — tyq + 2R(p — p) - n+4kn - Q + (K — /4:2)>} u(ps)
1

(A n+R)” — A2 +ie
where
~9 1 1 / 2 _ -2
P, = 5( p’q‘f‘upq’)_z(’i — k)" +2RA, n+ R,
_ 1 1
PSQ = 5 (Sp/q/ + Spq) — Z(FJ/ — /ﬁ})2 + ZRAS n+ RQ 5 (48)
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and
;o L,
§ = @ ).
§ = @+ il —r)

§d = ~2MQ+ 5 (s + ) = M? = 2 (6 = ) —p) -
1 ! 1 / 2
by (8 = ) (@l — 5 (5 — w)7
id = QM@“‘% (Uprg + Upg) — M? — % (K = r)(® —p)-n

1 / 1 / 2
~3 =R (@l = 5 (8 = )?

hf = M= (o p) — 3 (@ 0@ (W ).

hi = M+ (e p) = (@] 0 Q45 (5 =)

Wid = M+ Gy + 50— 5 (5 = )= (0 — p)f

FE = 8) (1 Q) — (5 = )@= 20 (0 — )@= 5 (' — )2

i = M+ g+ ) — 5 (8 — )= (0 — p)f
1

— (W =R) (0 Q)+ (¥ = r)@+2n- ( —=p)@— 5 (v = r)%h .
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Taking the limit k' = k = 0 yields

Vntw) = 1) [ 01+ 215 - @) om0
g <(M + Mp) (2MQ+u — M?) — m2@)
% (u@+ Mx (M@—m )) <M2—m2—u)
+é(u@+MA —u—M@)) (M2—m2—u)
é(M—f—MA_ ) (M2—m2—u)2] u(ps)
Xm ’
Moo(s) = —%si u(p's') E (M + Ma + @) (2m* —t)
g( (M + Ma) ( 2M@+3—M2)+m2@)
é<5@+MA M@+ m )> <5—M2+m2>
+é (s@+MA s — 2—M@)) (S—M2+m2)
é <M+MA+¢0> (s—M2+m2>2] u(ps)
xm . (50)

Considering only the As3 exchange and resonance in the Kadyshevsky integral equation and
study its n-dependence, we see from (47) and (49) that we have a similar situation as in
the previous subsection (section IIIB): all n-dependent terms in (47) and (49) are either
proportional to x or to ' and therefore (34) applies. The function h(k) is such that the
phenomenological ”form factor” (35) is necessary.

IV. INVARIANTS AND PARTIAL WAVE EXPANSION

In elastic scattering processes important (indirect) observables are the phase-shifts. In
this section we introduce the phase-shifts by introducing the partial wave expansion, which
is particularly convenient for solving the Kadyshevsky integral equation . By also using the
helicity basis we’re able to link the amplitudes obtained in paper I and the previous section
(section III) to the phase-shifts.
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A. Amplitudes and Invariants

Following the standard procedure, see e.g. [21], the most general form of the parity-
conserving amplitude describing 7 /N-scattering in Kadyshevsky formalism is

My, = u(p's') |A+ BQ+ A+ B [if, @ | ups) , (51)

where the invariants A, B, A" and B’ are functions of the Mandelstam variables and of x and
’. The contribution of the invariants to the various exchange processes is given in appendix
A.
In proceeding we don’t keep n* general, but choose it to be [3, 5]
1 ARV
o e+t ) (52)
Vg V'
With this choice, n* is not an independent variable anymore and the number of invariants
is reduced to two. This is made explicit as follows
1

u(p's’) ] u(ps) = mﬂ(ﬂs') [My + M; + 2@ u(ps) ,

') |16, uies) = 0. (53)

As a result of the choice (52) the invariants A and B in (51) receive contributions from the
invariant A’. We, therefore, redefine the amplitude

My, = u(p's) [A” + B”@} u(ps) ,
A+ ;
VSpd T \/Spa

2

B+ ———
VSp'g Tt \/Spg

Besides the invariants A” and B”, we also introduce the invariants ' and G very similar
to [22] [28]

A" = (M;+ M;) A",

B = A (54)

Mm:x%vk+awﬁwapﬂn$, (55)

since we will use the helicity basis. Here, x(s) is a helicity state vector. In [6] this expansion
was used in combination with the expansion of the amplitude in Pauli spinor space. The
connection between the two are also given there.

The relation between the invariants A”, B” and F, G is given by

F = \J(B'+ My)(E + M) {A”+%[(W’—Mf)+(W—M,-)] B”} ,

G = \/(E/—Mf)(E—Mi) {—A”+%[(W’+Mf)+(W+Mi)] B”} . (56)
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B. Helicity Amplitudes and Partial Waves

In this subsection we want to link the invariants A” and B” to experimental observable
phase-shifts. This is done by using the helicity basis and the partial wave expansion. The
procedure is based on [23] and similar to [7].

The helicity amplitude in terms of the invariants F' and G (see (55)) is

Mr(Ap, Ai) = Capni (0, 0) {F+4>\f>\iG} , (57)

where
Con(0,0) = xJ,(B) - X0, (D) = DY3: (6,0, —9) - (58)

Here, D! . (a,(,7) are the Wigner D-matrices [23] and the angles § and ¢ are defined
as the polar angles of the CM-momentum p’ in a coordinate system that has p along the
positive z-axis. In the following we take as the scattering plane the xz-plane, i.e. ¢ = 0.
Furthermore, we introduce the functions f; o by

fo

_h _
= G—47T. (59)

Then, with these settings the helicity amplitude (57) is

F

1

Mue(Af, Ni) = Ed;ﬁf(e) <f1+4/\f/\i f2) : (60)

Next, we make the partial wave expansion of the helicity amplitudes in the CM-frame very
similar to [22] [29]

Muu(Aph) = (4m) 7 S0@T + )M, () DI (6,6, ~9) .
J

= (4m) NN QT+ )M (Aph) S, (6) (61)
J

Using the partial wave expansion as in (61) we obtain the Kadyshevsky integral equation
(paper I) in the partial wave basis. Here, we just show the result; for the details we refer to

[7]
M) = MO + 3 [ Kb, MY Oph)
An 70
x G (Wos W) M2 (AN) - (62)
As mentioned in paper I, the k-label is fixed after integration.
Because of the summation over the intermediate helicity states the partial wave Kady-

shevsky integral equation (62) is a coupled integral equation. It can be decoupled using the
combinations f(y_1/2)+ and f(j41/2)— defined by

()= (0 ) (e ) (63)
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here we introduced L = J — 1/2 [30].

In (63) and in the following we omit the subscript 00 for the final amplitudes where &
and ' are put to zero.

A similar expansion as (63) holds for M”" 7(\;);) and what one gets is

FreW W) = v w)+ Y [ Rk, fizovn,)
 Jo
XG Wy W) frae(We, W) . (64)
The two-particle unitarity relation for the partial-wave helicity states reads [22]
i [M7(ApA) = M7 (Ndg)] =2k M7 (A A) M (Aids) (65)
An

In a similar manner as for the partial wave Kadyshevsky integral equation (62), also the
unitarity relation (65) decouples for the combinations (63). One gets

Imfre(W) =k fro(W)fr(W) , (66)

which allows for the introduction of the elastic phase-shifts

1 .
fL:t(W) = E 626Li(W) sin (SLi(W) . (67)
From (67) we see that once we have found the invariants fr.(W) by solving the partial
wave Kadyshevsky integral equation (62) we can determine the phase-shifts. The relation
between the invariants f4 (/) and the invariants f o is

+1
frr = %/ dr [Pr(z)fi + Pri(z) fo]

1
= fir+ forsr, (68)

where x = cos 0.

C. Partial Wave Projection

Via the equations (68), (59) and (56), the partial waves fri can be traced back to the
partial wave projection of the invariant amplitudes A” and B”, which means that we are
looking for the partial wave projections of the invariants A, B, A’, B’.

Before doing so we include form factors in the same way as in [6]. As mentioned there,
they are needed to regulate the high energy behavior and to take into account the extended
size of the mesons and baryons. We take them to be

()’

FA) = e a2 for t-channel ,
()
F(A) = e a7 for u, s-channel . (69)

The partial wave projection includes an integration over cosf = x. We, therefore, in-
vestigate the z-dependence of the invariants. Main concern is the propagators. We want
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to write them in the form 1/(z 4 z), which is especially difficult for the propagators in the
t-channel, because of the square root in A;. We therefore use the identity

1 B 1 N 2a [ d) 1 1 (70)
ww+a)  w2—a T Jy NH+a w2+ w?—a?]’
which holds for w,a € R. With this identity we write the propagators as
1 1 11 n Ay-n+R dA 1
24, Ay -n+r—A+ie 2pp |2 T h(R) | z(R) —x
2pp 0w P(R) zep —
1 1 _ 1 1_At-n—/~f/ d\ 1
2A, -\, n+k—A +ie  2p |2 T fr(=R) | z(—F) — =z
1 Ay-n—R / dA 1
2pp 0w Sr(=F) zea—
1 1 1
_ 2 = - — y (71)
(F+ A, -n)? — A2 2p'p 2u(R) + @
where p'p = [p/[[p| and
R = A2+ (A -n)+R2+2RA, -0,
1
g(F) = o [P +p+ M? =R = 2RA7 — (AY)]
pp
1 2 2
Zen = 0p [P +p+ M*+ X . (72)
The invariants are expanded in polynomials of x, like
FE(t) = [X9(£) + 2y (£)] DV(£A, n, R)
1 - - F(A) : : F(Ay)
= X! (£ Y (&) ) ———— X (£ Y3 (£
o | (i) +av@) e ( ) +avi(e) |
. 1 - , , F(A )
— X Yy 277
iu) 2p'p ( e ) 2(R) +
i(s) = Xj+chj+szj> FA.) : 73
/) < LW+ W + K + k) — M3 (73)
where j is an element of the set (A, B, A’, B"). Furthermore, there are the relations in the
t-channel
: 1 A+ & d\ :
X”i:—[——l— - / }in,
1(£) 9 Ir(£FR) (£)
- +AY
Xj(x) = T / SN0 (74)
A

The coefficients X7, Y7 and Z7 can easily be extracted from the invariants and they are
given for the various exchange processes in appendix A.

27



With the partial wave projection

i) = [ e Pula) i) (75)

1

where ¢ = t,u, s, we find the partial wave projections of the invariants

0 = 5o | (@) + 20V (@) U4 (20)

n (X§<i> n ZmYQj(i)> Us(hes20)

Y7 (£)Rp(As, 2:(£R)) — Y5 (£)R(As, Z)]
jo(u) = % {(Xj — ZU(R)Yj + Zi(li)Zj) Ur(Ay, z4(F))

) (—w ' zu<ra>Zj) Ry (A 2alR)) = Z0S0(Au, 2u(R)

, 1., 1 /2 j
ji(s) = {XJ L0+ 3 Y7 op, + 3 (5 Or2 + 5L,0> Z]}
F(As)

x 5 , (76)
TW+ W+ K +£) — M}
where
vin) = 5 [ e Pl
RL(A,Z) = %/_ld;UPL(QZ>F(A),
Su(A, 2) = % /_ draPL@)F() (77)

V. CONCLUSION AND DISCUSSION

In two papers, paper I and this one, we have presented the results for meson-baryon, or
more specifically m N-scattering in the Kadyshevsky formalism. In paper I we have presented
the results for meson exchange amplitudes and a second quantization procedure for the quasi
field present in the Kadyshevsky formalism is given. We studied the frame-dependence, i.e.
the n-dependence, of the Kadyshevsky integral equation, which we continued in this paper.

Couplings containing derivatives and higher spin fields may cause differences and prob-
lems as far as the results in the Kadyshevsky formalism and the Feynman formalism are
concerned. This is discussed in paper I by means of an example. After a second glance
the results in both formalisms are the same, however, they contain extra frame dependent
contact terms. Two methods are shortly introduced and applied, which discuss a second
source extra terms: the TU and the GJ method. The extra terms coming from this second
source cancel the former ones exactly. Both formalisms yield the same results. With the
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use of (one of) these methods the final results for the S-matrix or amplitude are covariant
and frame independent (n-independent). For practical purposes we have introduced and
discussed the P-method and last but nog least we have shown that the TU method can be
derived from the BMP theory.

In this paper we have presented the results for baryon exchange. It also contains a
formal introduction and detail discussion of so-called pair suppression. We have formally
implemented ”absolute” pair suppression and applied it to the baryon exchange processes,
although it is in principle possible to also allow for some pair production. The formalism
used is based on the TU method. For the resulting amplitudes, we have shown, to our knowl-
edge for the first time, that they are causal, covariant and n-independent. Moreover, the
amplitudes are just a factor 1/2 of the usual Feynman expressions. The amplitudes contain
only positive energy (or if one wishes, only negative energy) initial and final states. This
is particularly convenient for the Kadyshevsky integral equation. It should be mentioned
that negative energy is present inside an amplitude via the A(x — y) propagator. This is,
however, also the case in the academic example of the infinite dense anti-neutron star.

The last part of this paper contains the partial wave expansion. This is used for solving
the Kadyshevsky integral equation and to introduce the phase-shifts.

APPENDIX A: KADYSHEVSKY AMPLITUDES AND INVARIANTS
1. Meson Exchange

Scalar Meson Exchange, diagram (a)

M), = gppsgs [a(p)u(p)] DY (A, n, R) | (A1)

1

1 |
where D! )(Atana k)= 24; * Apnti—Aitic

Ag = grpsgs D(l)(Atﬂ% R) . (A2)

X&§ = gprsgs - (A3)

Scalar Meson Exchange, diagram (b)

MY = gppsgs [a(p's)u(p)] DD(~A,n, &) . (A4)
As = gppsgs DW(—Ap,n, &) . (A5)
X¢ = grpsys - (A6)
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Pomeron Exchange

g g
Ap = Sereir.

The partial wave projection is obtained by applying (75) straightforward

Vector Meson Ezchange, diagram (a)

a _ gv
M,E,)K = —gypp u(p's) [29‘/@— Z (M — M;) + k')
%
1 _
X <1(sp/q/ — Spg F Upy — Uprg) — (m? —m) + 2&n - Q)

fv 1 1
+M 2(My + M;)Q+ 2 (Upg + Uprg) — 2 (8prg + Spq)

v (1 1
—ﬁ (5 (MF + M) + 5 (m +m?)

1 /1
3 §(tp’p + tq’q) + Upg' + Spq

# My + M) R4 (= w07 = 6+ )k )

1 1 _
X <1(3p’q’ — Spg) + Z(qu’ — Upg) — (m?‘ - mf) +2kn - Q

XD(l)(At, n, /%) .
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Ay =

Xy

1
—gvpp [ M2 (My — M;) (Z(Sp’q’ — Spg F Upg — Uprg) — (mff - m?)

_ fv fv (1
+ 2kn - Q) + M (qu’ + Upg = Sprg — Spg) — m ) (MJ% + MZQ)
1 1/1 1
+-= (mfe +m;) = = s (typ +taq) + Upg + Spg | + = (K — ,'<;)2
2 2\ 2 4
/ — 1 1 2 2
— (' +p)-nk Z(Sp/q/ — Spq) + Z(qu’ — Upg) — (mf - mi)

+ 28N - Q)} D(I)(At, n,K) ,

_2gvpp |:gV —+ % (Mf + M>:| D(l)(At,TL,R> s

—_

.4;

gvppK [g 4

M2 (My + M;) ] (_ Sp'q = Spg T Upg — Uprg)
2

2MV
— (mfc ) + 2Rn - Q) DW(A,n, R) . (A10)

1 1 1

+ % (E'E — EE) + R(E + 5)) + v (M7 + M}

/ / / "2 2 _fV
+m}+m! —2(E'E+EE) — (E'+ &) — (E+€) > AM (M’%
1

1
5(“3/—/?)2—

—2B'E - 28'€ —4E'E+ (E+&)°) —2(E' + E) F;)

+M? +m}+m] + (M7 + 3M} + 3m5 +m

o |

L (=)

1 o 1 , 1
X(Z(Ef+g> “lprer-ton- ) -

% (E'€ — EE') + (€ + 5))} !

__9gvpp fvp'p 1 / n2 2
T [1+4M3((E+5) (E+&)° — (M? — M?)

=3 () + 2B - BE) +4n(E +6) )| |

—2 M M,
gVPP[gV+2MV( ft )};

o gveek [gv LI (M, + M, )} ((E' +EV —(E+ &)

4MZ 2My
— (M7 —M}) =3 (m} —mi) +2(F'E— EE) +4R(E' + 5)) : (A11)
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Vector Meson Ezchange, diagram (b)

M, = ~gvee W's) (20 S5 (O 28— )
Vv

1 _
X (Z(Sp/q/ — Spq + Upg — Uprg) — (m?« - m?) — 2kn - Q>

Jv 1 1
+2MV 2(Mf + M;) @+ B (qu’ + up’q) D) (Sp’q’ + Spq)
fV (1 2 2 1 2 2
— 2V (2 (M?+ M)+ = (mE+m
1/1
) §(tp’p +tgrq) + Upg + Spq
1
~ My M+ 6 = R+ ) )
1 _
X (Z(sp/q/ — Spg + Upy — Upyq) — (mfc — mf) — 2Rn - Q)} u(ps)
x DW(=A;,n, &) . (A12)
Ay = W ary— ) [ 2 _ 2
v = —gvpp _M_‘Q/( 5 — M;) Z(Sp’q’ — Spg t Upg — Upg) — (mf - mi)

_ Jv v [1
— 2I€n . Q) -+ M (upq/ -+ up’q — Sp’q’ — Spq) — m 5 (M]% + Mf)

1 1/1 1
+= (mfc + mf) — = Sty +tyq) +Upy + Spg | + = (K — 5)2
2 2\ 2 4
/ — 1 1 2 2
+ (@ +p)-nk Z(sp’q’ — Spq) + Z(upq’ — Uprg) — (mf - mi)

— 2Rn - Q)} DW(=A; n, k),

By = —2gvpp |gv + Jv (My + M;)| DO (A, n, R
2My,

gvpPpK fv 1
Ay = — WE {gV + 2My (My + Mz)} <1(3p’q’ — Spq + Upy — Uprg)
v

— (m% —m?) — 2En - Q) DW(—A;, n, &) . (A13)
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1

, ne 1 1
Xt = —avre |~ St My = 30 ( (' + €07 = (B = L (07 = 1)
3(2 Ny Lme —pey_reve A M7 + M7
= (mf —mi) + 5 (F€ = BE) —R(E'+ &) ) + 7 (M} +

+m} +m; —2(E'€+ EE) — (E'+ &) — (E+ 5)2> - 45\3\?} (M?
, ) s 1., 2 1
+M,.+mf+mi+§(’< —K) =

—2E'E —28'6 —4E'E+ (E+&)°) +2(E' + E) I{)

(M7 + 3M7 + 3m% + m;

DO |

« G(E’%’)Q—}l(ff%) —}L(Mf M2) —

»Moo

(mp —m7)

% (E'E — EE") —R(E + 8))} ;

gvep fvD'p
Vi = - ]
% My { +

e ((B'+&) = (B+8) — (M} - M?)

— 3 (m2 —m?) +2 ('€ - BE') - <s'+s>)},

Jv
X\é = —2gvpp |:gV+W(Mf+M) )

&= —gm%"’“ [ + 2f7v (My + M, )] ((B'+&) - (B+ey
— (M} — M?) =3 (m} —m]) +2(F'E — EE) —4R(E + 5)) : (A14)

2. Baryon Exchange/Resonance

Baryon Exchange, Scalar coupling

2 1
M3, = 955 u(p's’) {5 (My+ M;)+ Mp — Q+ 771/%} u(ps)D® (Ay,n,E) , (Al5)

where the denominator function is D® (A;,n, &) = [ (F + A; - n)® — A2 iz,

2 M
Ag = %S [5 (Mf‘i'Mi)‘i‘MB} D (Ay,m,F)

92
BS = _?S D(2) (Au7n7’r€> )

2
Ay = %SRD@) (Ay,n, ) . (A16)
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|
X4 = 952 (M + M) + M| |
xB =9

(A17)

=1

2

’ gS

X = —=2=
S 2

Baryon Exchange, Pseudo Scalar coupling

The expressions for baryon exchange with pseudo scalar coupling are the same as (A15)-
(A17) with the substitution Mg — —Mp.

Baryon Resonance, Scalar coupling

MSZ = g5 u(p's’) E (My+ M;) +Mp+ @+ ﬂl-ﬂ] u(ps)D(Q) (Ag,n,R) . (A18)

2 1

4g = & {5 (Mf+Mi)+MB} D® (A nR)
92

By = 7 D (Aun, )
92

2 M1
X4 = —%S {5 (Mf—l—MZ-)—l—MBl ,

ds
XB = —
S 2 ?
’ 92
X§ = —75 R . (A20)

Baryon Resonance, Pseudo Scalar coupling

The expressions for baryon resonance with pseudo scalar coupling are the same as (A18)-
(A20) with the substitution Mp — —Mp.
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Baryon Exchange Vector coupling

MY = oatrs) | = (G 0+ 1) - b1a)

2
1
( ]\4f+]w2 +§(Up’q+upq’)+(Mf+Mi)@

5K R0 =) R B 5 (= )

g g =3 (50 = 300+ @4 5 (= 1)
3 =) (=5 0 = 30+ @ 5 (= )

(My—=M)(p'—p)-n—0@ —p) n@+2Q-nQ

+
=i
/|\
N —

1

_§(Mf_Mi)(/§'—/€)+%(Mf—Mz‘)[’ﬂa@]

Ay = 22% {— (% (M; + M;) —MB) (—% (M7 + M?) + = (tpq + tpg)
~ S = = p) = (= 0 ) = 5 (3 - )

¥ (0 —p)-n+ T (Uprg — Upg — MJ% + M?) (Mg — M)

1 1
By = 2V [_ (§(Mf—|—]\/[) MB> (Mf—i—Ml-)—l—é(M?%—Mf

— Upqg — upq’) — k(' —p)-n+2kn- Q} D® (Ay,n, R)

2
A, = ﬁ {(Mf — upq/) K+ (MJ% — up/q) li:| D® (Ay,n,R)
2
B{/ = —4 V2 |:/£,Mi — /iMf - (Ii, - K)MB} D 2) (Au,TL, ’_i) :
mﬂ'
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X = _% {_ (% (M, + M) — MB> (% (m% 4+ m?) — '€ — B¢’
1 K
- 50 =R (B = B) = 5 = ) = 5 (b = )

x (B — E) — ! (m} —m? +2E'E — 2EE") (My — M;)

5 (My = M) (8 = )|
2 ./
A _ i o'p |1
Yy = m? {5( f*Mi)—MB]>
B \2/ 1 1 2 2
XF = 5E §(Mf+Mi)—MB (Mf+Mi)+§(mf+mi
—2E’€—2E5’)+/£(E'—E)-n—f<;(5'—l—€) :
2 ./
5 _ Jvpp
YV - m2 )
2
Xy = o W (m} = 2BE") 4w (m = 2E'€)]
. [PRDPD
YV — m2 y
2
Xt = 471‘;2 [K'M; — My — (k' — k) Mg] (A23)

Baryon Exchange, Pseudo Vector coupling

The expressions for baryon exchange with pseudo vector coupling are the same as (A21)-

(A23) with the substitution Mp — —Mp.
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Baryon Resonance, Vector coupling

KK

MY = Datrs) | = (G 0+ 31 - 1)

2
1
X (__ (MJ% + Mi2> + 2 (Sprgr + Spg) — (Mg + M;) @

i Y

O =) = p) = 5 (=) U = 5 O~ )

2 2
5 (o =081 (5 00y = )+ @+ 5 )
g Com = 202) (=5 O = 20 +.Q= (¢ = w05
+R —%(Mf—Mi)(p’—p)-n+(p’—p)-n@+2Q'n@
— 5 (My = M) (5 = ) — 5 (M = MG [ @
5 (07 4 02) o= 5 G+ 5 | ) D (B . (a2
Ay = S| (G oty + 30 = 0 ) (G +) = 5 (047 )
—%x—@@—m>n—;w—mﬁ—§<f—wmwum»n
45 (st — p0 — M+ M?) (M; — M)
_g( F = M) (5 = 5)| DD (8, %)
By = AL (St 420 = ) 4y 5 )+ 5 (s 50— 287 = 017

+ R(p' —p) -n+2En - Q] D® (Ag,n, &) ,

2
Amz

2
A, = v {(Mf — qu) K+ (MJ% — sp/q/) n] D@ (A, n,R) |

2
B{/ - fv |:H,Mi - RMf - (K/ - K>MB:| D(2) <A57n7 R) : (A25>

2
Amz
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2
PO
T o

™

—% (% (My + M;) — MB) ((E’ + &)+ (E+E)
2

(M2 4 M) - %(m' C ) (B —E)— 2w — &

2

|

(Mg = M) (B = E)+ § (B + €)' = (B + &)’
(My = M) (W = )] .

K
>
— M2+ Mf) (My — M;) —

v o s+ M) — Mg (Mf+Mi)+1(E,+5/)2
( ) :

N | ZI

2
(E+5)2—%(M?+Mi2)+/e(E’—E)+/£(5'+€)] ,

Ll
2

2

A’__fV 2 _ 2 / 2 / "2

X =55 (M2 = (B+€7) K+ (MF = (B + &)} r| ,
2

B’ fV / /
XV = —W |:K,Mi—K,Mf—(/£—/‘€)MB‘| (A26)

Baryon Resonance, Pseudo Vector coupling
The expressions for baryon resonance with pseudo vector coupling are the same as (A24)-

(A26) with the substitution Mg — —Mp.
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%+ Baryon Exchange, Gauge invariant coupling

9y
Mn’,/{ = _fu(plsl)[
1—2 1 = 2 2
5 P { 5 (My + M) + My = Q-+ Faf | (m +mif — ty,)

2
1, /((1 , 1 )
—3Pi ({5 My + M) + Ma ) dd' + 5 (wpy = M?) d

1 I
L (s bty — M2 = i — ) —l—mﬁgjgj)

_% ((pj+%( f—MZ-)> ¢+% (5p0 — M? — 2m2)
_%M + MAWM) (Pu-d)

_% dd + MwM’) (Pu-q)
—i (% (My + M;) + Ma — Q-+ rm) (Pu-d') (Pu Q)] u(ps)
« D (A, n,R) . (A27)

Here, P2 is defined in (48). All the expressions for the slashed terms (i.e. ¢, ¢', etc.), can be
found in (A68). Furthermore

Pu‘ql = <—M}%+Mi2_3m?—m?+8p/q/—upq/+tq/q_2/—€<p/_p)‘n
Q- () )
P,-qd = <MJ%—Mf—mfc—3m?+qu—up,q+tq,q+2,;é(p/_p).n

+4Rn - Q + (K? — K?) ) . (A28)
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2
(1 =5 |1
Ay = Yo {533 {5 <Mf+Mi>+MA] (m§ +m? = ty,)

1 - 1 1 1
3 sz {(5 (Mf + M;) + MA> (g(up’q + upq/) ) (M]% + Mi2)

(6 =R = )= (= 0 ) 4 (v = M) (O = )

12 2 i
1 1 2 2
+§MA §(up/q+upq/) (Mf+M1)
A = )= 3 =) =i (e e
1 _
—§(f-@’ — /{))} (P.-q)
1|1 _ _
T4 {5 (M + M) +MA] (Pu-d) (Pu- Q)} D® (Ay,n, k) . (A29)
921' L 5o/ o 2
Ba = —79 {—5 2 (mF 4+ mi —tyq)
1 1
3 P [(5 (My + M) + MA) (M + M) + (UM’ MZQ)
1 1
+5 (Spg + tgrg — M7 —m5% —3m7) 4+ 28(p' —p) -n+ 5 (K2 — 12
1 . 1 _
— 5 (P + MaMy) (P d') + 55 (PI = MaM;) (P - q)
37 (Peet) (Pe-) [ D (Ao (A
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Al

1 -1 1
3 Pg {Z (’f, — K) (upq’ - Miz) T (HI — K) (Spq +igq — M22

oty = 3m2) & (=5 (M7 M) + 5 + )

(W R —p) - (ﬁ’—*”v)Q‘”‘%(“/_R)Q)]

1 _
_ﬂ |:(li, — R)Pg — MA (I{Mf + KJ/M,L‘):| [Sp/q/ + Spqg — Up'qg — Upg’
+ 2ty — 4m?c — 4m? + 8Fn - Q}
K = = _
+to1 (Pu-q) (P - q)} D@ (A, n, &) . (A31)
2
S Mar’
— %{Pg |:Mi/£/—Mf/€+MA(I<&/—F&):|+ iﬁ (Pu-q/)
M _
B (P ) 0% () (A%2)
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2
gz — 1 /
X3 = 79{(133)01\4 {i(ijLMi)JrMA} £'e
1 D2 1 1 2 2 2 2
1 1
—2F'E —26'E) — 5 (M7 + M?) - 5(/4 —kK)(E' - E)
1 1 1

—g 6 =) g o 288 0ty - M) — (B + £

—28'6 — M7 — 2m§> (My — M;) — % R(Mp— M) (E+ 5)}

—M? —2m]) — = Ma (1 (E'+ &) + % (E+&)° -

L B ((pg)CM + 22 (0 - Mi)> (M = M;) + 5 Ma ((E +€)°
1
5 2

—%(I{ — k) (E' — FE)— =(k' — n)2) + kMa (E’ + % (& +E)

73 [% ((Pj)CM + % (M — Mi)> (My — M;) — % Ma (m% — 2EE')

+ %MA (% (m} +mi —2E'E —2E'E) — %(H' — k) (E' - E)
5 =) =t (< (€ )= 500 =) | (R ),
51 |5 O M0+ 28] (P )y (P ) (A33)

where
(P2)oy, = E (M2 + M2 4 m? 4 m? — 25€ — 26'E) + '
+R(E’+E—5'—5)] ,
(P d)py = {—M}Z —3m2 + (E' + &) 4 2BE' — 26'€ — 2(E' — E)
+2R(E+E) — (K7 - I{Q):| :
(P q)py, = [—Mf —3m2 4 (B4 E)’ +2E'E —26'€ + 2 (E' — E)
+2R(E+ &)+ (k7 - 52)] : (A34)
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2

{ B (M + M) + MA] 2e's

(P2) o, B (M, + M) + MA]

Wl Wl ot s

1 1
[(5 (My+ M;) + MA) (5 (M7 + M} +m7 +m] —2E'E

—26'E) — % (M7 + M?) — %(Fv’ —R)(E' = E) = S(v - /1)2>
— i ((E +E)? 28— M? - 2m?) (M — M;)
+i (m} — 2EE") (My - M;) - %ff (My — M;) (€' + 5)}

1
3 [—Mf — M? = 3m2 —3ml+ (E'+&)° + (E+€)°

+2E'E + 2FEE" — AE'E + 4R (€' + 5)] [My — M;]

My (pu.q)CM} _ (A35)

(My + M;) + MAl : (A36)

(P s [G (Mg + M;) + MA) (Mg + M)

2
9gi / 1
XAB:?"{ e 55—5

(P
%(EJFS —28'€ — M2—2m>
%( i —2EE) + (E’—E)+%(/£’2—/12)]

1
2

—_

1

n
{ +MAMf} (Pu-d) ey + % {(Pf)CM - MAMz} (Pu- ) oy
2 (e

+
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2
i L5
YY = gg;p{—25’5+§(P3)cM

. K% (M + M;) + MA) (M + M) + ((E L) —2gs

—M? - 2m§> + % (m} —2EE") + R ((K — k) +2(E' — E))]
1

+e {M]% — M?+3m% —3m? — (E'+ &) +(E+E)°
—2EE' +2E'E + 4k (E' — E) + 2 (k" — /8)} } : (A38)
2 /)2
28 - ggz(g P (A30)

2
xg = {R (P2)ons €€~ + () o H (W — k) (m? — 2B€' 4 26

1
—(B+&)*+ M} +2m?> +R (5 (mj+m}) —FE—-EE

1 1 1

—5(/4 — k) (E' - E) — 3 (k' —k)? - 5("@/ —K) (€ +5>>]

3 | ) (P2 ey = M (et 1) | (874 7
+(E+&)° + 2B +2BE — 26'€ — M? — M?
~8m} — 3m} + 47 (€' +€) |

tp (P )y (Pud) ey} (A40)

2 ./
v = %{2 ge - 3 "~ (P,

(1
+kR|z

2(mf%—m) E'5—5'E—%(/{'—/€)(E’—E)
1 s 1, ,
—5 (K —K)® — 2(/<; —R) (& +5))}

( !/

— M? —3m% = 3m}+ (B + &)’ + (E+ &)

YOE'E + 2BE — AE'E + AR (E' + 5)} } . (A41)

44



, 5 2' /1) 2
, (-
f — —1—95 { (PQ)CM [Mili, — Mflf + MA (Ii/ — li)]
MA f{/ = MA K —
+ 1 (PU'q/)CM_ 4 (PU'q)CM} . (A43)
95:0'p
vE = — 926 |:Mi/i, — Mk + Ma (K — /{)} : (A44)
%+ Baryon Resonance, Gauge invariant coupling
2
Mﬁ’,n = _%a(plsl) |:
L 5 (1 - 2 2
5 P\ 5 (My + Mi) 4+ Ma + @+ Faf | (mip +mi = tyy)
1, (/1 o1 N
—3 5 5 (My+ M)+ Ma ¢¢—§(Spq—Mi)¢
1
) (upq’ +itgq — Mi2 - 3m3” - m?) q+ R%ﬂjlﬁ)
1 —o  Ma Ma
_E <<PS2 + T (Mf — MZ)) %l + T (MZQ —+ Qm? — upq/)
M _
5 dd + MMW’) (P -q)
1 _ Ma Ma
+5 ((Pf + = (M - Mz‘)) 4+ (8pg — M)
M _
2 ¢4 Marid) (P2 )
1 /1 B _
xDP (A, n,R) , (A45)
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where P? is defined in (48) and the slashed terms are as, before, defined in (A68). The inner
products in (A45) are

P,-qd = (—M?+Mi2+3m?+mf+sp/q/—upq/—tq/q—ZR(p’—p)-n
+4RH'Q—(FLI2—K2)) ,
P,-q = (MJ%—M3+m§+3m§+qu—up,q—tq/q+2f‘-@(p’—p)-n

+4kn - Q + (k" —I€2)) .

(A46)
An = _%{%Pf B (Mf‘i‘Mi)‘i‘MA} (mff"‘m?_tq’q)
—%Pj K% (M + M;) +MA> <%(sp,q, + Spq) — % (M7 + M)
3 = R0 =) 0= 3 =)+ (o )
x (My— M;) + i (Mi2 + 3m?‘ + m? — Upg' — tq/q) (My — M;)
R0y = M- Q]
v | (P24 52 0ty = ) (01— b = 5 0
( +2mf upq) - ;MA (%qu + Upg) (Mf + MZ)
1 1 2
5(/{ —K)(p —p)-n—é(li — K) ) — RMa (—n p+n-Q
)]
g (3 (P24 252 O =300 ) (5 = 300 + 5 Ma (5 - 32)
+%MA (1(3pq/ + Spg) — %(Mf +M2)
%(H — k)P —p)-n %(H — k) ) + RMa (n p4n-Q
-
214 B (My + M;) +MA] (P q) (Ps-q)} D@ (A,,n,F) . (A47)
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2 )
Joi {1 p? (m?c +m? — tq,q)
— Mf)

2 12
_%pg G (M; + M) +MA> (M + M;) — 3 (5pq
+ % (M7 + 3m% +mi — upy — tyg) — 28(p' —p) -
_ % (K” — /4:2)}
—% (P?+ MaMy) (P q) + — (PY = Mad) (P - q)
+i (Ps-d') (P q)} ¥ (Asin,R)

g /_i
— P (mf+m tq/q)
1
qu — Mf) + 1 (k' — k) (]\/[Z-2 + Bm? +m?
_ 1 2 2 1
—Upg — tgq) + R D) (Mf + Mz) + 5(517%1’ + Spq)
1 / / / 1 / 2
S =R D)0t (K = R)Q L (W~ R)
{(/@ — /{)1582 — Ma (/fo—i—/f'Mi)} [sp/q/ + Spg — Uprg — Upg

2
1
4

1
24
— 2tgq + 4m7 + 4m] + 8kn - Q}

51 (P q) (PS . q’)} D@ (A, n,R) .

2
9gi {PSZ {Mm’—Mf/ﬁ—l—MA (HI—KJ):|

K/MA —

47

AT T
M _
“Ma (. q’)} DO (A0, 7).

(A48)

(A49)

(A50)



2
gz o 1 !
Xﬁ = %{(PSQ)CM |:§(Mf—|-Mi)+MA:|gg

P, K% (M; + M) + MA> (% (B'+&) 4 5 (B + €Y

S oo o)
—|-i(m?c+2E5/—|—25/5) (My— M,;) + i((E‘F‘g) 12)

X (Mf —Mz)+§(Mf _Mz> (6/+8):|

+35 |5 ((P)ow + 752 Oy = 200 ) 447 = )

- Laay (4 2m8) - Ly (% (m% 4+ m2)
_2(F'E+ EE) - %(FJ C W) (E - B)— 2 — @2)
— EMa (—E’ + % (& +E) - %(m’ - H))} (Ps-q)
+1—12 B ((Pj)CM + % (M; — Mi)) (M; — M)
1

+-Ma((E+E)° - )+2MA<%(E/+5,)2+%(E+5)2

[\Dlr—kl\-?*—‘
—_

(M +M7) —

DO |

S8 =) (B~ B) — 5w~ H)2>

+ RMa ( (5'+5) ;(fi' - 'f)ﬂ (P d) s

214 E (Mf—f'M)‘i‘MA} (P d) oy (PS'Q)CM} 7 (AB1)

where

1 / N2 1 2 / _ / /

= [5(13 +£&) +§(E+5) +Kk+R(E+E+E& +8)} :

(Ps-d)enr = {—M?+m?+(E’+€’)2+2E5’—|—25’8—QK(E’—E)
2/€(gl+8)_</€,2—/f2):| ’

(Ps-q)py = [—Mf +mi4+ (E+E)’+2EE+28'E+ 2R (E — E)

2R(E"+ &)+ (k7 - 52)} : (A52)
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94iPP - 1
Vi = QT{_(Pj)CM {5 (Mf+Mi)+Ma]
Ma
+=5 {—

1 1 1

3 M7 + 3 M} +2M; M, + 3 (3m} +m7) — (E'€ — EE)
1 2
—(E'+&)" -
2

N o

(E+&)° —4rE' — (K7 — M)}

+

11
5 lg (M; + M) +MA} [—MJ% — ME+mi+m?+ (B + &)

+(E+ &) +2F'E +2EE +4E'E + 45 (€' + 5)} } . (A53)

92 (P'p)?

Zy = — 3

(My + M;) + MA} : (A54)

T 1
N —

2L (P2)cs, — Ma (01 + 20

1
+3 [—M]%—M,?+m§+m$+(E’+5’)2+(E+5)2

+OEE + 2E'E + AE'E + 4R (€ + 5)] } . (A56)
2 (/)2
78— ggz(g P (A57)
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X3 = % {n (P2) ., €€ - % (P?) s E (K — &) (B+ &) — M)

1 1
+ 5 (= x) (m§+2E5’+25’5)+m(—§(M}+Mf)
1 / "2 1 2 1 / /
+§(E + &) +§(E+5) —5(/@—5)(E—E)
1 1
#3000 €48 - 5 )]

1 _
+ﬂ (K’—KJ) (PSQ)CM—MA(I{/MZ‘—FI{M]@)][ Mf M2

+mi +m?+ (B + &) + (E+E) +2E'E + 2E¢’

+4E'E + 4R (&' + 8)]

2
, 95 0P [, = Ma
YA = _QT {’f< 32>CM_T[“/M1'+“MJ‘]
g[ M? — M} +m3 +mi+ (B + &) + (E+&)
—l—2E’5+2E5'+45’5+4R(5’+5)]}.
a0 _ _95P)’
A 3
x5 _ a p? M — kM + (K — 1) M
X =15 ( ) K'M; — kM + (K — k) Ma
H/MA — KJMA —
2 (PS'Q)(JM+ 1 (PS'QI)CM}‘
2 /
o guMap'p
YA = gT(lil—fi) .

20

(A58)

(A59)

(A60)

(A61)

(A62)



3. Useful relations
a. Feynman

In Feynman formalism the following relations are quit useful

2(q - q) = mi+mi—t,

2(p’-p):M?+Mi2—t,

20 -¢) = s — M7 —m7,

2(p - )—S—Mf—m?,

20p-q') = MP+mj—u,

2(p’-q):M]%+mf—u. (A63)
s+u+t=M;+ M +mj+m?. (A64)

1

1
d/:—§(Mf—Mi)+@,

i = (M + D) Q=5 (MF+02) +u,

§d = — (4 MYQ— 5 (M} + M) 5. (A65)

b. Kadyshevsky

In Kadyshevsky formalism there are similar relations

2(¢' -q) = m?‘ +m12 —tgq »
2(p" - p) = M]% + M7 —ty, ,
200 q) = Splg — MJ% - m?f )
2(p-q) = Spq_AMz?_mz2 g
2(p-q¢) = Mi2+m?c — Upy
2(p - q) = M? +mE — Uy - (A66)

Spq + Spg + Upg + Upg + by T lgq = 2 (MJ% + M7 + mfe +my) + (5 — k)
2 2 2 2
2\/SpqSpg + Uprg + Upy + typ +1gq = 2 (Mf + M; + my + mz) . (A67)

o1



§ =~ (M; = M) + Q= (W — )
§ = 5 (M= M)+ @t S — )
ﬁlg = - (Mf‘i’Mi)@‘i'% (Sp’q’ +3pq) - % (Mf2 +Mi2) _%(’{,_ fi)(p'—p)-n
1

!/ ]‘ !/ 2
5 (= W) [ @ — 5 (5 = )

g = (My+ M) Q3 (i + ) — 5 (MF 4 M) = 5 (5 = )9 = p) -

by (5 = W) @ 5 ()

W= 5 My M= (0 p) 45 W@+ Q=2 (6~ )

h =~ (M4 MY+ () + 5 @ bn Q5 (6 — )

Hfd =~ (MF+ M2t 5 (g sp0) s (M = M) [ @+ (M — M) - Q
5 (5 = ) (= ) (8 %) (- Q) — (5 — )@~ 2 (1 — )@
5 (5 = R

Wi = 5 (M3 M2+ 5 (g + ) o — 3 (My = M) B @) — (My — Mm@
(6 0~ (6 R) (- Q)+ (6 — R+ 20 ()~ )@
5 (5 — ) (AGS)
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By frame dependent we mean: dependent on a vector n*.

In a SU(N) theory a baryon is represented as a ¢V state, whereas a meson is always a q@
state, independent of V.

We note that this interaction Lagrangian (10) is charge invariant.

This is because (2" — y*)A(zx —y) =0

The difference is a normalization factor.

The difference is again a normalization factor. We use the same normalization as [6] and [7].
The labels L+ and (L 4+ 1)— in (63) and their relation to total angular momentum J come
from parity arguments as is best explained in [23].
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