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Abstract

Background: This paper presents the quantization ofmassive andmassless spin-2 particles using the auxiliary-
field method. The issue of the perihelium precessions for a massive graviton in agreement with the data
is studied in the context of this spin-2 theory in tree-approximation.

Purpose: The aim is to study the masless limit and to investigate the perihelium of the planets as a function of
the graviton mass, and to calculate the effects to first order in the graviton mass.

Method: The field theory for the spin-2 particles is constructed using the Dirac quantization method. In order
to impose sufficient constraints on the spin-2 tensor ℎ��(x)-field, an auxiliary vector-ghost field ��(x)
and a complex scalar-ghost field �(x) are introduced. The ℎ��(x)-field is coupled to a conserved energy-
momentum tensor, which results in a dependence of the ℎ��-propagator on the �(x)-field for the massive
case.

The gravitational interactionbetween the the sun and the planets (treated as scalar particles) is introduced
as in the weak-field approximation in general relativity, i.e. by a coupling of the ℎ��(x)-field to the matter
energy-momentum tensors.

Results: A general Lagrangian, containing parametersA and b, for the massive spin-2 (tensor) formalism using
the auxiliary spin-1 (vector) and spin-0 (scalar) fields is reviewed. It is found that only A=-1 leads to a
physical theory. Furthermore, it appeared that for the proper transition to a massless spin-2 theory the
limit b → ±∞ is required. Bymaking a suitable field-transformation, a theory is obtained for massive and
massless spin-2 fields with an imaginary-scalar-ghost �(x) and a vector-ghost ��(x) field, both satisfying
free Klein-Gordon equations. Furthermore, it is shown that the �-field is eliminated from this model forb = ±∞. The quantization of the � ghost-field is analyzed. Using a standard Gupta-condition for physical
states, taking care of the �(x) ghost-states in the standard manner, a massive spin-2 quantum field theory
with a spin-0 scalar-ghost is reached.

Coupling the ℎ��(x)-field to the energy-momentum tensor for the sun and planets, the non-newtonian
correction to the periheliumprecession is in accordance with the Einstein result also for a non-zero gravi-
ton mass.

Conclusions: In the context of this setting it is found that, in tree-approximation, a small spin-2 graviton mass
is compatible with the perihelium-precession of Mercury etc.
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I. INTRODUCTION

It is one of the aims of this investigation to find amassive quantized spin-2 theory,henceforth refered
to as RTG-AF, which, in tree-approximation, allows (i) a smooth massless limit, and (ii) a perturbative
expansion in the small ("graviton") mass M. Here, we exploit the auxiliary field (AF) method with a
vector and a scalar field. 1. For the latter to be meaningful, it is necessary that the theory satisfies the
following requirements: (i) unitarity, and (ii) a correct massless limit. This would open the possibility
of giving a small mass to the graviton without destroying e.g. the correct prediction for the perihelium
of Mercury. In the literature this issue has been discussed both in Minkowski [1, 2] and in de Sitter
space [3–5].

It appears that this is impossible without making use of (complex-)ghost fields. The possibility to
exploit complex ghost-fields is analyzed in detail in this paper usingmethods discussed in the literature,
see [6]. Bymaking a simple field-transformation the ��(x) and �(x) fields can be decoupled and amodel
is obtained for massive spin-2 field with free auxiliary fields ��(x) and �(x). Using Gupta conditions
for the latter a quantum field theory with a complex-ghost field is reached. Henceforth we refer to
this formalism as the auxiliary-field quantum field theory (RTG-AF). This form of the massive spin-2
formalism is similar to the so-called "B-field formalism" for QED,QCD and massive vector-mesons as
described in Refs. [7, 8].

In this RTG-AF-formalism the massless limit can be studied in detail, and it is shown that in this
formalism a small spin-2 (graviton) mass is compatible with the Einstein non-newtonian correction
of the perihelium-precession of Mercury etc.. From recent observations [9–11] and studies [12] the
upper limit for the graviton mass seems to be �G ≤ 2 10−38 me = 18.22 × 10−66 g, and is estimated in
these notes to give a really tiny correction to the perihelium precession of Mercury.

The contents of this paper consists of three parts. In the first part the attention is focussed
on the field equations, the quantization with the Dirac-method, the commutations relations, and
the Feynman-propagator. In the second part (i) the (causal) quantization of the complex auxiliary
ghost-field is reviewed, and (ii) the final field theory model is formulated which is designed for the
computation of the perihelium precession, hving a smooth massless limit. The precession of Mercury
is calculated with a finite mass-correction for the "graviton". The third part contains a number of
appendices containing supporting material.

First part: In section II the general Lagrangian for the spin-2 ℎ��(x), the auxiliary spin-1 ��(x),
and spin-0 �(x) fields is given, which contains the graviton-massM2-, the scale-massℳ-, the A and
b-parameter. Here also the field equations are derived. Furthermore, the decoupling of the vector
and scalar auxiliary field is achieved via a field transformation. Here also the coupled Klein-Gordon
equations for the spin-2, the spin-1, and spin-0 fields are given. In section III the Dirac’s Hamiltonian
method, appropriate for the quantization of constrained systems, is executed for the spin-2 tensor-field
exployting the auxiliary field method with a vector and scalar filed. The canonical momenta are
defined, the Hamiltonian is given, the constraints are shown. The latter are dealt with using Lagrange
parameters, Poisson- and Dirac-bracktes are described, and equal-time commutation (ETC) relations
are given and discussed. In section IV an integral representation for solutions of the free Klein-Gordon
equations for the tensor, vector, and scalar fields is used to obtain the non-equal-time commutation
(NETC) relations. This path also leads to the Feynman-propagator for the tensor-field. Section V is
devoted to the question whether a representation for the spin-2 propagator etc. can be found in the
"b-parameter space" that (i) allows a smooth massless limit, and (ii) such that for M ≠ 0 the theory
1 In sections I-VIII the graviton mass is notated by M2 or M and after that by �G .
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contains besides the spin-2 propagator also a physical acceptable spin-0 propagator. This leads tob → ±∞. We summarize our preliminary conclusions w.r.t. the impossibility of a massive spin-2
theory with a no-ghost scalar field and a correct prediction for the perihelia. In section VI, (i) It is
shown that the �-field can be eliminated from the model for b → ±∞, leaving only the auxiliary
(ghost) �-field, and (ii) the physical content of tensor-field ℎ��(x)-field is described.
Second part: In section VII the (causal) quantization of purely-imaginary fields is described in detail.
In sectionVIII themassive spin-2model of this paper is applied to a computation of the non-newtonian
correction of the perihelium-precession of Mercury. The gravitational interaction between the sun
and planets is introduced via the coupling of the ℎ��(x) spin-2 field to the energy-momentum tensors.
In section IX the contribution to the perihelium precession is computed for the scalar and scalar-ghost
part of the tensor-field propagator. The results on the perihelium precession are summarized and
compared with solar-system data. The finite-mass correction are computed and shown to be negli-
gible. In sectionXIwe discuss the results and compare this RTG-AFwith othermodels in the literature.

Appendices: In Appendix A starting with the Bethe-salpeter equation for two-scalar particles,
e.g. the sun and planet, the local and non-local potentials for the Schrödinger equation are derived
for the planetary motion. In Appendix B the matrix element of the scalar particle interaction for
imaginary-ghost exchange is worked out in detail. In Appendix C the gravitational cross-term field
energy for the planet-sun sytem, giving a -1/6 correction to the perihelium precession, is expicitly
evaluated. In Appendix D the cosmological term is incorperated in the spin-2 formalism in the weak
field approximation. The possible relation between the cosmological constant and graviton mass is
discussed and consequences for cosmological parameters are estimated. Finally, Appendix E contains
the derivation of

√−g up to second order in the ℎ��-field.

II. MASSIVE GRAVITATION FIELD, EULER-LAGRANGE EQUATIONS

In the work on the quantization of the spin-2 fields [13], the symmetric ℎ��-tensor field are used,
and two auxiliary (ghost-)fields ��(x) and �(x). The Lagrangian consists of three parts ℒ2,�� = ℒ2 +ℒGF + ℒint which are specified below. In [15] the most general ℒ2 is parametrized in terms of the
parameters A,B, and C, with B = (3A2 + 3A + 1)∕2 and C = 3A2 + 3A + 1 2 where

ℒ2 = )�ℎ∗��)�ℎ�� −M22ℎ∗��ℎ�� − ()�ℎ∗��)�ℎ�� + )�ℎ∗��)�ℎ��)
−A ()�ℎ∗��)�ℎ�� + )�ℎ�∗� )�ℎ��) − B )�ℎ�∗� )�ℎ�� + CM22ℎ�∗� ℎ�� , (2.1)

In [13] we used the form

ℒ2 = 14)�ℎ��)�ℎ�� − 12)�ℎ��)�ℎ�� − 14B)�ℎ��)�ℎ�� − 12A)�ℎ��)�ℎ��
−14M22ℎ��ℎ�� + 14CM22ℎ��ℎ�� , (2.2)

and application of the variation principle via the Euler-Lagrange (ℰ.ℒ.) equations gives the equation
of motion (EoM) for the spin-2 field as well the constraints, for A ≠ −1∕2, i.e. analogous as the Proca-
formalism for spin-1. However, in the Proca formalism M2 ≠ 0 is essential and hence prevents a
2 These relations between A,B,C are connected to the constraints ℎ�� = 0 and )�ℎ�� = 0.
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useful massless limit [8]. Since for our purpose the massless limit is essential we use auxiliary fields,
henceforth referred to as the B-fieldmethod. For the symmetric ℎ��-tensor field and the auxiliary ��(x)
and �(x) fields, the Lagrangian is ℒ�� = ℒ2 +ℒGF +ℒint where 3

ℒ2 = 14)�ℎ��)�ℎ�� − 12)�ℎ��)�ℎ�� − 14B )�ℎ��)�ℎ�� − 12A )�ℎ��)�ℎ��
−14M22ℎ��ℎ�� + 116M22ℎ��ℎ�� , (2.3a)

ℒGF = ℳ)�ℎ���� +ℳ2ℎ��� + 12b2M22����, (2.3b)

ℒint = � ℎ��(tM,�� + tg,��). (2.3c)

Here, we have introduced the scaling massℳ. Since we will investigate the massless limitM2 → 0 it
will be convenient to distinguish this from the ’dynamical" spin-2 mass M2. In the mass term for the��-field we keptM2, but the ��-mass is distinct from the spin-2 mass, namelyM2� = −b2M22 . 4

Note: The purpose is to derive the spin-2 propagator via the quantization of the ℎ��(x)-
field. For that we need the constraints which follow from the "free field equations". So, in
this section we take � = 0.
The massless one-graviton exchange is given by the matrix element

ℳ = �2T��P(2)(��;��) t��∕k2
= 1

2�2T��
(������ + ������ − ������) t��∕k2

= �2 (T�� 1k2 t�� − 1
2T�� 1k2 t��)

where the symmetry of the energy-momentum tensors is used. This accounts for the
proper contributions of the graviton polarizations (see e.g. [16]).

First we work out the terms in the Euler-Lagrange equation (2.2)

)� )ℒ
)�(ℎ��(x)) −

)ℒ
)ℎ��(x) = 0, (2.4)

and similarly for the ��(x) and �(x) fields. We have for ℒ2 (2.4) 514)�ℎ��)�ℎ�� → 12□ℎ��(x)
−12)�ℎ��)�ℎ�� → −)�()�ℎ��),
−B4 )�ℎ�� )�ℎ�� → −B2 g��□ℎ�� ,
−A2 )�ℎ��)�ℎ�� → −A2 g��)�)�ℎ��,
−14M22 ℎ��ℎ�� → +12M22 ℎ��,
+C4M22 ℎ��ℎ�� → −C2M22 g��ℎ�� .

3 In the following, we often denote the mass byM2 ≡ M.
4 In studying the limits M2 → 0, b2 → ∞ we keep b2M22 fixed. Later on in this appendix it will appear that for a
proper description of the tensor-field commutators, we need to putℳ = M2. This implies that we use here the
same Lagrangian as in [13, 14].

5 In this appendix we denote the Minkowski metric by g��.
4



Similarly from ℒ�� we get

)ℒGF∕)ℎ��(x) → −12ℳ ()��� + )���) (x) +ℳ2g���(x),
)ℒGF∕)��(x) → +b2M22 �� +ℳ)�ℎ��(x),
)ℒGF∕)�(x) → +ℳ2 ℎ��(x).

Collecting terms, we get the equations(g��g��□− 2)�)�g�� − B g��g��□−A g��)�)� + g��g��M22−C g��g��M22
) ℎ��(x) +ℳ ()��� + )���) (x) − 2ℳ2g�� �(x) = 0, (2.5a)

ℎ�� = 0 , b2M22 ��(x) +ℳ)�ℎ��(x) = 0. (2.5b)

Using ℎ�� = 0 gives (□+M22
) ℎ��(x) = 2)�()�ℎ��(x)) + A g��)�)�ℎ��(x)−ℳ ()��� + )���) (x) + 2ℳ2g�� �(x), (2.6a)

ℎ�� = 0 , )�ℎ��(x) = −(b2M22ℳ ) ��(x). (2.6b)

With the last equation for )�ℎ��(x) gives for ℎ��(x):(□+M22
) ℎ��(x) = −ℳ (1 + b2M

22
ℳ2 ) ()��� + )���) (x)

−g�� (A b2M
22ℳ () ⋅ �(x)) − 2ℳ2�(x)) . (2.7)

Using ℎ�� = 0 in the last equation above again, we obtain
0 = −2ℳ (1 + b2M

22
ℳ2 ) ) ⋅ �(x) − 4Ab2M

22ℳ ) ⋅ �(x) + 8ℳ2 �(x),
which gives the relation

) ⋅ �(x) = 4ℳ [1 + (2A + 1)b2M
22

ℳ2 ]
−1

�(x). (2.8)

Finally, we now substitute this relation into the field-equation for ℎ�� and obtain
(□ +M22

) ℎ��(x) = −ℳ (1 + b2M
22

ℳ2) ()��� + )���) (x)

+2ℳ2 (1 + b2M22
ℳ2 ) [1 + (2A + 1)b2M22

ℳ2 ]−1 g�� �(x). (2.9)

Next we derive the field-equations for ��(x) and �(x). For that purpose we introduce the abbreviation
6

b ≡ b2 (M22∕ℳ2), (2.10)

6 In the following we will assume thatℳ = M2. In the formulas we still useℳ andM2.
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and the equations have the form(□ +M22
) ℎ��(x) = −ℳ(1 + b) ()��� + )���) (x)

+2ℳ2(1 + b)[1 + (2A + 1) b]−1 g�� �(x), (2.11a)

ℎ��(x) = 0, )�ℎ��(x) = −bℳ�� , ) ⋅ � = 4ℳ[1 + (2A + 1) b]−1 �(x). (2.11b)

For the derivation for �� we start with )�ℎ�� = −bℳ�� which gives the relation
)�(□ +M22)ℎ�� = −bℳ(□ +M22)�� (2.12)

Using the field-equation for ℎ�� on the l.h.s. we get
)�(□ +M22)ℎ�� = −ℳ(1 + b) (□�� + )�) ⋅ �) + 2ℳ2 (1 + b)[1 + (2A + 1)b]−1)��(x)

= −ℳ(1 + b)□�� − 2ℳ2(1 + b) [1 + (2A + 1)b]−1 )��(x) (2.13)

The combination of (2.12) and (2.13) gives the ��-equation:(□ +M2�
) ��(x) = −2ℳ 1 + b

1 + (2A + 1)b)��(x) withM2� = −bM22 . (2.14)

The equation for �(x) is obtained by differentiation of (2.14) and using (2.8) which leads to(□+M2�
) = 0 with M2� = − 2b

3 + bM22 . (2.15)

Decoupling vector and scalar field: Making the transformation �� → �� + )�Λ with

Λ(x) = −2 ℳM22
(3 + b)

b [1 + (2A + 1)b]�(x), (2.16)

we arrive at the equations(□− bM22
)�(x) = 0, ) ⋅ �(x) = 0, (2.17a)(□ +M22
) ℎ��(x) = −ℳ(1 + b) ()��� + )���) (x)

+2ℳ2(1 + b)[1 + (2A + 1)b]−1 [g�� − 23 + bb )�)�
M22

] �(x). (2.17b)

Summary of the field-equations:(□ +M22
) ℎ��(x) = −ℳ(1 + b) ()��� + )���) (x)

+2ℳ2(1 + b)[1 + (2A + 1)b]−1 [g�� − 23 + bb )�)�
M22

] �(x), (2.18a)(□ − bM22
) �(x) = 0, (2.18b)

(□ − 2b3 + bM22) �(x) = 0, (2.18c)

and the constraints:

ℎ��(x) = 0, ) ⋅ �(x) = 0, (2.19a)

)�ℎ��(x) = −bℳ (�� + 2ℳ
M22

3 + b
b(1 − b))��) (x). (2.19b)

The vector and scalar auxiliary fields��(x) and �(x) are free (ghost) fieldswith an imaginary
mass.
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From equations (2.16) and (2.17) one easily derives for the "free" ℎ��-field, that
(□ +M2�)�� = 0, (2.20a)

(□ +M2� )(□ +M2�)(□ +M22)ℎ�� = 0. (2.20b)

III. QUANTIZATION

Dirac’sHamiltonianmethod is appropriate for the quantization of constrained systems [13, 17]. The
canonical momenta are defined as

��� = )ℒ
)ℎ̇�� , �

� = )ℒ)�̇� , �� =
)ℒ)�̇ . (3.1)

Differentiation formulas: "non-symmetric differentiation gives" a

a) ))0ℎ�� (14)�ℎ�)�ℎ�) = 12)0ℎ��,
b) ))0ℎ�� (−12)�ℎ�)�ℎ�) = −�0�)�ℎ��,
c) ))0ℎ�� (−14B)�ℎ )�ℎ) = −14B ������ ))0ℎ��

()�ℎ��)�ℎ��) =
−14B ��������0

[������)�ℎ�� + ������)�ℎ��] = −12B )0ℎ ��� ,
d) ))0ℎ�� (−12A )�ℎ��)�ℎ) = −12A ��� ))0ℎ��

()�ℎ��)�ℎ��) =
−12A ��� [��0���)�ℎ�� + )�ℎ�0������] =
−12A

[��0)�ℎ + )�ℎ�0���] .
a This corresponds to the use of the form (2.1) with ��� = )(ℒ2∕)0ℎ∗��.

For the general Lagrangianℒ2,�� one obtains

���(x) = 12)0ℎ��(x) − ��0)�ℎ��(x) − 12B )0ℎ(x) ��� ��,� = 0,
−12A

[��0)�ℎ(x) + )�ℎ�0(x) ���] +ℳ��0��, �� = 0. (3.2)
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Explicitly these momenta are 7

�002 (x) = −12(1 + 2A + B) ℎ̇00(x) − (1 + 12A))nℎn0(x) − 12(A + B)ℎ̇nn(x), (3.3a)

�0m2 (x) = +12ℎ̇0m(x) − )nℎnm(x) − 12A )m (ℎ00(x) + ℎnn(x)) , (3.3b)

�nm2 (x) = 12ℎ̇nm(x) − 12B
(ℎ̇00(x) + ℎ̇kk(x)) �nm − 12A

()kℎk0(x) + ℎ̇00(x)) �mn, (3.3c)

� k2k(x) = +12(1 − 3B) ℎ̇kk(x) − 32 (A + B) ℎ̇00(x) − 32A )kℎk0(x). (3.3d)

From the constraint )�ℎ�� = 0(ℳ = 0) it follows that ℎ̇0m = −)nℎ0n and this gives
�0m2 (x) = −12)kℎ0k(x) − )nℎnm(x) − 12A )m (ℎ00(x) + ℎnn(x)) ,

i.e. a constraint and not an independent canonical-momentum variable. 8

With B = (3A2 + 2A + 1)∕2 the momenta in (3.3) become
�002 (x) = −34(A + 1)2 ℎ̇00(x) − 12(A + 2))nℎn0(x) − 14(3A + 1)(A + 1)ℎ̇nn(x), (3.4a)

�0m2 (x) = +12ℎ̇0m(x) − )nℎnm(x) − 12A )m (ℎ00(x) + ℎnn(x)) , (3.4b)

�nm2 (x) = 12ℎ̇nm(x) − 14(3A + 1)(A + 1) ℎ̇00(x)�nm − 14(3A2 + 2A + 1) ℎ̇kk(x) �nm
−12A )kℎk0(x) �mn, (3.4c)

� k2k(x) = −14(3A + 1)2 ℎ̇kk(x) − 34(3A + 1)(A + 1) ℎ̇00(x) − 32A )kℎk0(x). (3.4d)

Trying to solve for ℎ̇00 and ℎ̇nn leads to the equation
⎛⎜⎝
�002 + 1

2 (A + 2))nℎn0
� k2k + 3

2A)kℎk0
⎞⎟⎠ =

⎛⎜⎝
−3
4 (A + 1)2 −1

4 (3A + 1)(A + 1)
−3
4 (3A + 1)(A + 1) −1

4 (3A + 1)2
⎞⎟⎠ (

ℎ̇00ℎ̇kk )
Obviously, the determinant is zero. There are two solutions: A=-1 and A=-1/3. The case A=-1 leads
to the velocity ℎ̇kk = −� k2k + 3)kℎk0∕2 and the constraint �00 = �00 + )nℎn0∕2 = 0.
The caseA=-1/3 leads to the velocity ℎ̇00 = −3�002 −5)nℎn0∕2 and the constraint � k2k = � k2k−)kℎk0 = 0.
For gravity this solution is unphysical. Therefore, henceforth we will only consider the case A=-1,
which is treated in Ref. [13].

The velocities are

ℎ̇nm = 2�nm2 − �nm� k2k + 12�nm)kℎk0, (3.5a)

ℎ̇ k2k = −� k2k + 32)kℎk0, (3.5b)

7 Note that for A=-1, B=C=1, �002 etc. agree with [13]. The �0m2 leads to a constraint because of )�ℎ��|f⟩ = 0.
8 Remark: In the Dirac-method of quantization the equations from the ℰ.ℒ. equations are always valid and can be used, for
example for the time dependeces etc, for example leading to new constraints [17].
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and the primary constraints

�002 = �002 + 12)nℎn0 −M2�0 , �0� = �0� ,
�0m2 = �0m2 + )nℎnm − 12)mℎ00 , �m� = �m� ,

−12)mℎnn −M2�m , �� = �� . (3.6)

which vanish in the weak sense [17, 18].

A. Dirac-theory: The Hamiltonian and Constraints 9

The Hamiltonian isH2,�� = ∫d3xℋ2,�� with

ℋ2,�� = �nm2 �2,nm − 12� n2n� m2m + 12� n2n)mℎm0 − 12)kℎn0)kℎn0
−14)kℎnm)kℎnm + 18)nℎn0)mℎm0 + 12)nℎnm)kℎkm
+12)mℎ00)mℎnn + 14)mℎnn)mℎkk − 12)nℎnm)mℎ00 − 12)nℎnm)mℎkk
+12M22ℎn0ℎn0 + 14M22ℎnmℎnm − 12M22ℎ00ℎmm − 14M22ℎnnℎmm
−12cM22���� −M2)nℎn0 −M2)nℎnm�m −M22ℎ00� − M22ℎkk�
+�2,00�002 + �2,0m�0m2 + �0,��0� + �m,��m� + ���� . (3.7)

The Poisson-bracket (Pb) is defined as

{E(x), F(y)}P = [ )E(x))qa(x)
)F(y)
)pa(y) −

)F(y)
)qa(y)

)E(x)
)pa(x)] �3(x − y). (3.8)

Imposing the time derivatives of the constraints (3.6) to be zero [13]{�002 (x),H2,��
}
P = −M2�0� + 12

()k)k +M22
) ℎmm

−12)n)mℎnm +M22� = 0 ≡ 12Φ02, (3.9a){�0m2 (x),H2,��
}
P = 2)k�km2 − ()k)k +M22

) ℎ0m
−M2)m�0 −M2�m� = 0 ≡ Φm2 , (3.9b){�0�(x),H2,��

}
P = )nℎn0 + �002 + bM2�0 = 0, (3.9c){�m� (x),H2,��
}
P = )nℎnm + �002 + bM2�0 = 0, (3.9d){�m� (x),H2,��
}
P = M22

[ℎ00 + ℎnn] = 0 ≡ M22Φ� , (3.9e)

For the determination of the Lagrange-multipliers one imposes, called secondary constraints. Requir-
ing the time derivatives of the secondary constraints to be zero gives the conditions{Φ�(x),H2,��

}
P = −� k2k + 12)nℎn0 − bM2�0 = 0 ≡ −Φ(1)2 . (3.10a)

9 The material in this section is taken from Ref.’s [13, 14] and is included here for completeness.
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Equation (3.10) yields a further (tertiary) constraint{Φ(1)2 (x),H2,��
}
P = )k)kℎ00 + 12)k)kℎmm − 12)n)mℎnm + 32M22ℎ00 +M22ℎmm

−M2)k�k − )m�m02 + 3M22� + bM2�0� = 0, (3.11)

which gives another equation for �0�. Combining with (3.9a) and use Φ� as a (weakly) vanishing con-
straint. This gives for

Φ(2)2 = −)n)mℎnm + ()k)k +M22
)ℎmm + 2M2)k�k − 2 (3 + b1 − b)M22�, (3.12)

the constraint {Φ(2)2 , H��,2
} = −2)n)m�nm2 −M22� k2k + ()k)k + 32M22) )nℎn0

+2M2)k�k� − 2 (3 + b1 − b)M22�� = 0. (3.13)

All Lagrange multipliers are determined, and all constraints are send class. This means tat every con-
straint has at least one non-vanishing Pb with another constraint. The complete set is

�002 = �002 + 12)nℎn0 −M2�0 , �0� = �0� ,
�0m2 = �0m2 + )nℎnm − 12)mℎ00 , �m� = �m� ,

−12)mℎnn −M2�m , �� = �� ,
Φ(2)2 = −)n)mℎnm ()k)k +M22

)ℎmm , Φ� = ℎ00 + ℎnn ,
+2M2)k�k − 2 (3 + b1 − b)M22� , Φ(1)2 = � k2k − 12)nℎ0n + bM2�0 . (3.14)

The following linear combinations of constraints reduce the number of non-vanishing Pb’s [13]

Φ̃� = Φ� − 1M2 �0� = ℎ00 + ℎnn − 1M2�0� ,
Φ̃(1)2 = Φ(1)2 + c�002 + 1

2M22
(1 − b3 + b) (2)k)k + 3M22

) ��
= �kk + b�002 + 1

2M22
(1 − b3 + b) (2)k)k + 3M22

) �� − 12(1 − b))nℎn0 ,
�̃0m2 = �0n2 + 1

(3 + b))nΦ̃� = �0n2 − 1
M2(3 + b))n�0� + )kℎkn

−12 (1 + b3 + b) ()n (ℎ00 + ℎkk) −M2�n ,
Φ̃(2)2 = Φ(2)2 + 2)k�̃0k2 = 2)k�k02 − 2

(3 + b)M2 )k)k�0� + )n)mℎnm
+ 2
(3 + b))k)kℎnn − (1 + b3 + b) )k)kℎ00 − 2 (3 + b1 − b) M22� + M22ℎkk . (3.15)
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For these new constraints the remaining Pb’s are{�002 (x), �0�(y)}P = −M2�3(x − y),{�̃0n2 (x), �m� (y)}P = −M2gnm�3(x − y),{��(x), Φ̃(2)2 }
P = 2 (3 + b1 − b)M22�3(x − y),{Φ̃(1)2 (x), Φ̃�}P = −(3 + b)�3(x − y). (3.16)

In a proper (quantum) theory the constraints have to vanish in the strong sense. But we stil have
non-vanishing Pb’s between them, implying ETC relations among the constraintswhich are unwanted.
Therefore, Dirac [17] introduced the Dirac-bracket (Db) such that the Db’s between constraints vahish

{E(x), F(y)}D = {E(x), F(y)}P −∫ d3z1d3z2 {E(x), �a(z1)}p
×Cab(z1 − z2) {�b(z2), F(y)}P , (3.17)

where the inverse functions Cab(z1 − z2) are satisfying
∫ d3z {�a(x), �c(z)}P Ccb(z − y) = �ab�3(x − y) (3.18)

and can be derived from the Poisson-brackts in (3.16).
The ETC relations are obtained by considering the fields operators, replacing the Db’s by commu-

tators, and adding a factor i. The result is

[ℎ00(x), ℎ0l(y)]0 = 4i
3M42

)j)j)l�3(x − y),
[ℎ0m(x), ℎkl(y)]0 = −i

M22
[ 4
3M22

)m)k)l − 23)mgkl + )kgml + )lgmk] �3(x − y),
[ℎ̇00(x), ℎ00(y)]0 = − 4i

3M42
)i)i)j)j�3(x − y),

[ℎ̇0m(x), ℎ0l(y)]0 = i
M22

[ 4
3M22

)m)l)j)j + 13)m)l + )j)jgml] �3(x − y),
[ℎ̇00(x), ℎkl(y)]0 = i

M22
[ 4
3M22

)k)l)j)j + 2)k)l − 23)j)jgkl] �3(x − y),
[ℎ̇nm(x), ℎkl(y)]0 = i [−gnkgml − gnlgmk + 23gnmgkl

− 1
M22

()n)kgml + )m)kgnl + )n)lgmk + )m)lgmk)
+ 2
3M22

()n)mgkl + gnm)k)l) − 4
3M22

)n)m)k)l] �3(x − y). (3.19)
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The ETC containing the auxiliary fields ��(x) and �(x) are[ℎ00(x), �0(y)]0 = 3i
M2(3 + b) �3(x − y),[ℎ0n(x), �m(y)]0 = iM2 gnm �3(x − y),[ℎ0n(x), �(y)]0 = − i
M22

(1 − b3 + b) )n�3(x − y),
[ℎmn(x), �0(y)]0 = − i

M2(3 + b gnm �3(x − y),[�0(x), �m(y)]0 = i
M2(3 + b) )m�3(x − y),

[�0(x), �(y)]0 = 3i2M2
(1 − b)
(3 + b)2 �3(x − y). (3.20)

Here, as mentioned in [13], not shown are the ETC’s among time derivatives of the fields in (3.20),
which are of importance for the calculation of the non-equal times commutation (NETC) relations
below. These follow from the constraints )�ℎ��(x) = −bM2��(x), ) ⋅�(x) = 4M2(1−b)−1�(x) in (2.11)
for A=-1, which solves the time derivatives

ℎ̇00 = )nℎ0n − bM2�0 , ℎ̇0n = )kℎkn − bM2�0,�̇0 = )k�k + 4M2(1 − b)−1 �. (3.21)

This enables the derivation of the ETC’s (and NETC’s) for these time derivatives in terms of those in
(3.19) and (3.20) immediately.

IV. FIELD-COMMUTATORS AND SPIN-2 FIELD PROPAGATOR

The solutions of the homogeneous equations in (2.18) and (2.19) satify the identities, see e.g. [8],

ℎ��(x) = ∫ d3z [)z0∆(x − z;M22) ⋅ ℎ��(z) − ∆(x − z;M22) )z0ℎ��(z)] + 1
M22 −M2�

⋅

×∫ d3z[)z0(∆(x − z;M2�) − ∆(x − z;M22)) − (∆(x − z;M2�) − ∆(x − z;M22)))z0] ⋅
×(□ +M22) ℎ��(z) + 1

(M2� −M2� )(M22 −M2�)(M22 −M2� ) ⋅

×∫ d3z[)z0((M22 −M2�)∆(x − z;M2� ) − (M22 −M2� )∆(x − z;M2�) + (M2� −M2� )∆(x − z;M22))
−((M22 −M2�)∆(x − z;M2� ) − (M22 −M2� )∆(x − z;M2�) + (M2� −M2� ))∆(x − z;M22)))z0] ⋅
×(□ +M2�)(□ +M22) ℎ��(z). (4.1)

and

��(x) = ∫ d3z [)z0∆(x − z;M2�) ��(z) − ∆(x − z;M2�) )z0��(z)] (4.2)

�(x) = ∫ d3z [)z0∆(x − z;M2� ) �(z) − ∆(x − z;M2� ) )z0�(z)] (4.3)
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Using this identity the commutation relation can be calculated from the ETC, with the result[ℎ��(x), ℎ��(y)] = i{(������ + ������ − 2
3������)

+ 1
M22

()�)���� + )�)���� + )�)���� + )�)����)
− 2
3M22

()�)���� + ���)�)�) + 4
3M22

)�)�)�)�} ⋅
×∆(x − y;M22) = 2P����2 ()) i∆(x − y;M22), (4.4)

where P2()) is the (on mass-shell) spin projection operator, see e.g. [19]. The spin-2 Feynman propa-
gator becomes [13]

D����F (x − y) = −i⟨0|T [ℎ��(x)ℎ��(y)] |0⟩
= −i�(x0 − y0) 2P����2 ())∆(+)(x − y;M22)

−i�(y0 − x0) 2P����2 ())∆(−)(x − y;M22)
= 2P����2 ()) ∆F(x − y;M22) + (non − covariant local terms) (4.5)

In the following, we often denote the mass byM2 ≡ M. For the normalization of our solutions, the
commutation relations of the field operators are important. Using the Dirac quantizationmethod, and
using a vector and a scalar auxiliary field, the obtained field commutators read [13, 14] 10

[�(x), �(y)] = −34
b(1 − b)2
(3 + b)3 (M2

ℳ2)
2
i∆(x − y;M2� ), (4.6a)

[��(x), �(y)] = −32
(1 − b)
(3 + b)2

M2
ℳ2

)�
ℳ i∆(x − y;M2� ), (4.6b)

[��(x), ��(y)] = [��� − )�)�
bM2 ] i∆(x − y;M2�)

+ 3
b(3 + b)

)�)�
ℳ2 i∆(x − y;M2� ), (4.6c)

[�(x), ℎ��(y)] = (1 − b)
(3 + b) [)�)�M2 − 1

2
b

(3 + b)���] i∆(x − y;M2� ), (4.6d)

[��(x), ℎ��(y)] = 1M [)���� + )���� + 2
M2�

)�)�)�] i∆(x − y;M2�)

− 1M [ 1
(3 + b))���� +

2
M2�

)�)�)�] i∆(x − y;M2� ), (4.6e)

[ℎ��(x), ℎ��(y)] = [(������ + ������) − 2
3������ + …] i∆(x − y;M2)

− [13 b
3 + b������ + …] i∆(x − y;M2� ). (4.6f)

The ellipsis in the square brackets above denote terms with )�, ...., )� . These are unimportant since we
couple the spin-2 field to a conserved energy-momentum tensor t��. The massesM� andM� are given

10 In contrast to [13, 14] we use here for the Minkowski-metric the notation ��� . There should be no confusion with the
auxiliary vector-field ��(x).
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in [13] in terms ofM2 and the b-parameter
M2� = −bM2 , M2� = − 2b

3 + bM2 . (4.7)

The field commutators for the ℎ��(x), ��(x), and �(x) fields are readily derived. Starting from
Eqs. (4.1) one obtains

[�(x), �(y)] = −34
b(1 − b)2
(3 + b)3 (M2

ℳ2 )
2
i∆(x − y;M2� ), (4.8a)

[��(x), �(y)] = 0, (4.8b)

[��(x), ��(y)] = [��� − )�)�
bM2 ] i∆(x − y;M2�), (4.8c)

[��(x), ℎ��(y)] = 1M [()���� + )����) − 2bM2 )�)�)�] i∆(x − y;M2�), (4.8d)

[�(x), ℎ��(y)] = (1 − b)
(3 + b) [)�)�M2 − 1

2
b

(3 + b)���] i∆(x − y;M2� ), (4.8e)[ℎ��(x), ℎ��(y)] = [(������ + ������) − 2
3������ +…] i∆(x − y;M2),

− [13 b
3 + b������ +…] i∆(x − y;M2� ), (4.8f)

where M� = M�, and in the commutator of �� and ℎ�� we have setℳ = M, anticipating with what

will be done later. Again, the ellipsis in the square brackets above denote terms with )�, ...., )� , which
are unimportant since we couple the spin-2 field to a conserved energy-momentum tensor T��. 11

It is important to note that upon quantization, the sign in [��(x), ��(y)] on the r.h.s. means negative
norm. Likewise for b∕(3 + b) > 0 we have negative norm states for �(x). This would require to set up
for physical states |f⟩ the subsidiary conditions for the positive-frequency parts

��(+)(x)|f⟩ = 0 , �(+)(x)|f⟩ = 0. (4.9)

It is one of the aims of this investigation to find a theory which allows (i) a smooth and correct
massless limit, and (ii) a perturbation expansion in the small mass M. For the latter to be meaningful,
it is necessary that the theory satisfies the following requirements: (i) no-ghosts, (ii) unitarity, and (iii)
a correct massless limit. This would open the possibility of giving a small mass to the gravitonwithout
destroying e.g. the correct prediction for the perihelium of Mercury.

Corollary: As follows from the commutator (4.8f) the correct masless limit requires the

double limit b → ±∞,M → 0.

V. MASSLESS LIMIT: SCALAR-TENSOR OR IMAGINARY-GHOST THEORY

In the previous section we concluded that the double limit: M → 0; b → ∞i leads to the proper
massless graviton propagator. It is the purpose of this section to analyze the distinctive physical con-
tents of the propagator for the ℎ��-field for the different regions of the parameter −∞ < b < +∞. In

11 Later on we will consider the double limit b →∞ andM → 0. In doing so we keepM2� = M2� = −bM2 finite.
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particularly in the massless limit we want to investigate the possibility of a smooth decoupling of the
"false helicities".

From the commutators in (4.8) we obtain the propagator by the replacement

∆(x − y;M2)→ ∆F(x − y;M2) . (5.1)

Then, we have apart from irrelevant terms for the ℎ��-field the Feynman propagator 12
D��,��F (x − y) = [1

2

(������ + ������) − 1

3
������] ∆F(x − y;M2)

−
1

6

b
3 + b������ ∆F(x − y; − 2b

3 + bM2) . (5.2)

Introducing the parameter �, defined as
� =∶ b∕(3 + b), (5.3)

we can distinghuish three regions, see Fig. 1, for the b-parameter

I ∶ 0 ≤ b < +∞ ( 0 ≤ � ≤ 1),
II ∶ −3 ≤ b ≤ 0 (−∞ < � ≤ 0),
III ∶ −∞ < b ≤ −3 (1 < � < +∞).

One sees from (5.2) that forM ≠ 0 for region II the contents is a massive spin-2, and a massive spin-0
particle. For regions I and III the contents is besides a massive spin-2, a spin-0 ghost particle with an
imaginary mass.

The main goal of this investigation to find a theory which allows (i) a smooth massless limit, and
(ii) a perturbation expansion in the small mass M. In a no-ghost scenario it is necessary that the

theory satisfies the following requirements:
1. No-ghost: M2� > 0→ b∕(3 + b) < 0,
2. Unitarity: b∕(3 + b) < 0,
3. Correct massless limit: b∕(3 + b)→ +1 − ∆, ∆ > 0 ,
where ∆ ≡ 3∕(3 + b). Clearly, requirement 3) is in conflict with 1) and 2) if ∆ = 0, i.e. for a pure
spin-2 theory in the massless limit. So, with exclusively physical fields at best we can end up with is a
scalar-tensor type theory!

In order to analyze the massless limit in more detail we write the ℎ��-propagator as follows
D��,��F (x − y) = [1

2

(������ + ������) − 1

2
������] ∆F(x − y;M2) +

1

6
������ [∆F(x − y;M2) − � ∆F(x − y; −2� M2)]

≡ D̄��,��F (x − y,M2) + ∆D��,��F (x − y; �M2) (5.4)

In the limitM → 0 for � = 1 (b → ±∞) the extra piece ∆D��;��F → 0, and we get the proper massless
spin-2 propagator. Then, with � = 1 we have forM ≠ 0 a theory with (i) a massive spin-2, and (ii) an
"imaginary" spin-0 ghost particle. Below we will show that the latter will satisfy a free field equation,
which can be quantized [6] and taken care of using a Gupta-type subsidiary condition, see below in

12 In the limitM → 0, b → ∞ this propagator becomes the standard one, see e.g. [20].
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I

FIG. 1: Three regions in (b, �)-space. Region I, III: spin-2 and spin-0 imaginary ghost. Region II: (massive) spin-2
and spin-0.

section VII.

In momentum space we have

∆F̃��;��F (p) =
i
6
������ [ 1p2 −M2 + i� − �p2 + 2�M2 + i� ]

=
1

6
(1 − �)������ p2 + 3�M2∕(1 − �)

p2 + 2�M2 + i� ⋅ 1p2 −M2 + i� . (5.5)

Preliminary summary and prospect: We found in this section that by choosing the con-

stants suitably, and performing a couple of gauge transformations, we can eliminate the
unwanted helicity components in the massless limit. Thereby we arrive at a satisfactorily
massless spin-2 theory. This in accordancewith the Dirac quantizationmethod for spin-2
fields using auxiliary vector and scalar (ghost) fields.
We found theories of the kind: (i) −∞ < � ≤ 0: massive spin-2 and spin-0 particles with
in the massless limit a kind of scalar-tensor" model, (ii) � = 1: a massive spin-2 and an
imaginary-ghost spin-0 particles with a proper massless limit giving a relativistic theory
of gravitation in Minkowski space (RGT-AF). The latter we will investigate further in this
paper to find out whether it is posible to give a smallmass to the graviton,without destroy-
ing the correct prediction for the periheliumofMercury. This in contrast to the formalism
considered by Van Dam and Veltman [1, 2].
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VI. ELIMINATION �(x)-FIELD, PHYSICAL-CONTENTS ℎ��(x)-FIELD
We show that the �-field can be eliminated from the model for b → ±∞. this leaves only the tensor

field and the scalar ghost field. In the second part of this section we show the physical contents of the
resulting model.

A. Elimination �(x)-field
Elimination �(x)-field I: In the limit b →∞ the �(x)-field In the limit b →∞ the field transforma-

tions �� → ��−)�Λ ≡ �̃� lead for the gauge-fixing �-part of the Lagrangian to the changeℒGF → ℒ′GF
where

ℒ′GF = ℳ)�ℎ�� ⋅ �̃� + 1

2
bM2�̃��̃� +…

→ ℳ)�ℎ�� ⋅ �� + 1

2
bM2���� +… , (6.1)

since (2.16) givesΛ→ 0 in the limit b → ±∞. Then, the Euler-Lagrangeequation gives, takingℳ =M,

bℳ�� + )�ℎ�� = 0, (6.2)

which leads to �� = −(bℳ)−1)�ℎ�� → 0 for b →∞.

Elimination �(x)-field II: Notice that the �(x)-field occurs only inℒGF in a quadratic formwithout

derivatives. Consider the generating functional

Z = ∫Dℎ��D��D� exp [(i∕ℏ)∫ℒ d4x] ,
where ℒ = ℒ2 +ℒGF . Ignoring 1/b-terms the gauge-fixing Lagrangian is

ℒGF = 1

2
bℳ2��(x)��(x) +ℳ [)�ℎ��(x) + ̃ℳ )��(x)] ⋅ ��(x) +ℳ2ℎ(x)�(x).

Introducing ��(x) = )�ℎ��(x) + ̃ℳ )��(x), the �(x)-field can be out-integrated and yields
∫D�� exp {(i∕ℏ)∫d4x [1

2
bℳ2��(x)��(x) +ℳ ��(x)��(x)]}

=N exp {(i∕ℏ)∫d4x [− bℳ2
2b2ℳ2��(x)��(x)]}

This means that ℒGF → ℒ′GF where

ℒ′GF = −
bℳ2
2b2ℳ2

()�ℎ�� + ̃ℳ)��) ()�ℎ�� + ̃ℳ)��) +ℳ2ℎ(x) �(x).
So, for b → ∞ the first (contact) interaction vanishes, only the second one survives. This defines the
model for b →∞ without the �-field. (QED)
Remark: N ∼ 1∕

√b → 0. So the functional integral vanishes for b = ∞. This is consistent with the
Riemann-Lebesque lemma. Therefore, in the limit �(x) has to be set zero.

Since the conditions for the massless limit leads to the limit b → ±∞ as the only solution,
see Eqn. (4.8f), we from now on disregard the �-field. This leaves finally in the spin-2 model
of this paper, besides the ℎ��-fields only the scalar-ghost field �(x) with the subsidiary Gupta
condition �(+)(x)|f⟩ = 0 for the physical states |f⟩.
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B. Physical Contents ℎ��-field
Since we are interested in the correct massless limit we take b → ±∞, i.e. � = 1, and the commu-

tators become

[�(x), �(y)] = −
3

4
(M2
ℳ2)

2
i∆(x − y;M2� ), (6.3a)

[�(x), ℎ��(y)] = − [)�)�M2 −
1

2
���] i∆(x − y;M2� ), (6.3b)[ℎ��(x), ℎ��(y)] = [(������ + ������) − 2

3
������ + …] i∆(x − y;M2),

− [1
3
������ + …] i∆(x − y;M2� ), (6.3c)

It is clear from the commutators that the ℎ��-field contains a spin-2 and a spin-0 imaginary-ghost part.
To separate these two parts we introduce

ℎ̄��(x) = ℎ��(x) − ����(x) (6.4)

and determine  such that ℎ̄��(x) contains only spin-2 quanta. For the commutation relations we get,
settingℳ =M,[ℎ̄��(x), ℎ̄��(y)] = [ℎ��(x), ℎ��(y)] − ��� [�(x), ℎ��(y)] − ��� [ℎ��(x), �(y)]

+2������ [�(x), �(y)] = {1
2

(������ + ������) − 1

3
������} i∆(x − y;M2)

−
1

3
������ i∆(x − y;M2� ) + ��� ()�)�M2 −

1

2
���) i∆(x − y;M2� )

−��� ()�)�M2 −
1

2
���) i∆(x − y;M2� ) − 3

4
2������ i∆(x − y;M2� ). (6.5)

Again, the partial derivative terms can be ignored, and we find that for 2 = −4∕9 the i∆(x − y;M2� )-
terms vanish and the ℎ̄��(x)-field contains only spin-2 quanta:

ℎ̄��(x) = ℎ��(x) ∓ (2i∕3)����(x). (6.6)

The neglect of the partial derivatives makes it necessary that ℎ�� couples to conserved quantities, in casu
the energy-momentum tensor. This implies a coupling of both ℎ̄��(x)- and the ghost-field �(x). This is the
reason for the contribution to e.g. the planet-motion of the imaginary-ghost part of the ℎ��-propagator. So,
the ghost-field contributes to the amplitudes, but cannot appear asymptotically i.e. as a physical particle,
see [6].

VII. QUANTIZATION IMAGINARY-MASS FIELD

We rescale the �(x)-field
�(x) ∶= 1

2

√
3

√b(1 − b)2
(3 + b)3

M2
ℳ2 �̃(x) ⇒ 1

2

√
3
M2
ℳ2 �̃(x), (7.1)
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where ⇒ indicates the limit � → 1(b → ±∞). The basic commutation relation (4.8a) for the scalar
field becomes normalized

[�̃(x), �̃(y)] = −i∆(x − y;M2� ), (7.2)

withM� = i√2�M ⇒ i√2M. The quantization of spinless complex-ghost fields has been discussed in
e.g. [6, 21, 22]. In our discussion below we will follow these references. In particular we analyse the�̃(x) fields in terms of the spin-less complex-ghost fields �(x) and�†(x) havingM� andM∗� , respectively.
Compared to these references, the (-)-sign) in the commutator (7.2) is different, and we will discuss the
ensuing differences. Apart from the imaginarymasses the situation is quite similar to that of the B-field
in the so-called B-field formalism for (massive) vector field, cfr. [8], subsection 2.4.2. So, we introduce
a Gupta subsidiary condition for the physical states |f⟩ in the total Fock-space

�(+)(x)|f⟩ = �†(+)(x)|f⟩ = 0, (7.3)

and the quantization procedure is quite analogous to that as described in [6, 21, 22] for the complex-
ghost fields.

Notice that sofar we have not defined ∆(x − y;M2� ). This is the topic of the rest of this section.

A. Imaginary-ghost Quantization

In order to obtain real potentials, we follow the quantizationmethod given by Nakanishi [6] for the
scalar field with an imaginary mass. We make the identification

�̃(x) =∶ 1√
2

[�(x) + �†(x)] . (7.4)

Here, � and �† are spinless free complex-ghost fields having � = +i√2�G and �∗ = −i√2�G , respec-
tively. The Lagrangian [6] is given by

ℒ� = 1

2
()��)�� − �2�2 + )��†)��† − �∗2�†2) (7.5)

The expansion of the field operator �(x) = �(+)(x) + �(−)(x) in terms of annihilation and creation
operators is, see [6], section 16,

�(+)(x) = ∫ d3p
2!p(2�)3 �(p) exp

(ip ⋅ x − i!px0) , (7.6a)

�(−)(x) = ∫ d3p
2!p(2�)3 �†(p) exp

(
−ip ⋅ x+ i!px0) . (7.6b)

The canonical commutation relations for a ghost with a negative-metric imply 13

, [�(p), �†(q)] =
[�(p), �†(q)] = −(2�)3�(p − q), (7.7a)[�(p), �†(q)] =
[�(p), �†(q)] = 0, etc (7.7b)

13 Note that, in contrast to the imaginary-mass case case treated in [6], section 16 and 17, we have here a ghost with anegative
metric. This is taken care off by the (-)-sign on the r.h.s. in (7.7a).
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from which follow the field-commutators

[�(x), �(y)] = −i∆(x − y, i�), (7.8a)[�(x), �†(y)] = 0, (7.8b)[�†(x), �†(y)] = −i∆(x − y,−i�), (7.8c)

with the two-point vacuum expectation values [6] eq. (16.32),

⟨0|�(x)�(y)|0⟩ = −∫ d3p
2!p(2�)3 exp

[ip ⋅ (x − y) − i!p(x0 − y0)] , (7.9a)

⟨0|�(x)�†(y)|0⟩ = 0, (7.9b)

⟨0|�†(x)�†(y)|0⟩ = −∫ d3p
2!∗p(2�)3 exp

[ip ⋅ (x − y) − i!∗p(x0 − y0)] . (7.9c)

where !∗ = −!. This gives
⟨0|[�(x), �(y)|0⟩ = −∫ d3p

(2�)3!p exp [ip ⋅ (x − y)] sin!p(x0 − y0), (7.10a)

⟨0|[�†(x), �†(y)|0⟩ = −∫ d3p
(2�)3!∗p exp [ip ⋅ (x − y)] sin!∗p(x0 − y0), . (7.10b)

The field-commutator for the �̃(x)-field becomes
[�̃(x), �̃(y)] = −

i
2
(∆(x − y; i�) + ∆(x − y; −i�)) . (7.11)

B. Imaginary-ghost Propagator

Here, to emphasize the difference in mass, we used in the argument of the invariant ∆-function �
instead of �2. This implies for the Feynman-propagator of the �̃(x)-field [23]

i∆(x − y;M2� ) ≡ ⟨0|T [�̃(x)�̃(y)] |0⟩ = {⟨0|T [�(x)�(y)] |0⟩+ ⟨0|T [�†(x)�†(y)] |0⟩}
= −

i
2
[∆F(x − y;M = i�) + ∆F(x − y;M = −i�)] . (7.12)

The proper integration contour Γ, see Fig. 3, in the complex p0-plane is given as [6] Γ = R−�(!p)+�(−!p), where �(±!p) denotes a counterclockwise circle around the poles at ±!p [24]. (Note that for a
real massM� the Γ-contour becomes the usual contour for the Feynman propagator CF .)
Conjecture: The Feynman propagator function in (9.8) is

∆̃(p;M2� ) = 1

2

[
∆̃(1)(p;M2� ) + ∆̃(2)(p;M2� )

] , (7.13a)

∆̃(1)(p;M2� ) = 1

p2 −M2� + i0 + 2�i �(p2 −M2� ), (7.13b)

∆̃(2)(p;M∗2� ) = 1

p2 −M∗2� + i0 . (7.13c)

To show this we first evaluate for the integration contour Γ = R − �(!p) + �(−!p) the contribution
from the Leray coboundaries to ∆̃(1)(p;M2� ) in the complex p0-plane:

�(!p) ∼ −i� eip⋅x−i!px0∕!p, �(−!p) ∼ +i� eip⋅x+i!px0∕!p,
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and therefore

−�(!p) + �(−!p) = i� [e−i!px0 + e+i!px0] eip⋅x!p . (7.14)

Next we evaluate

I� ≡ ∫ d4p
(2�)4 �(p2 −M2) =∫ d3p

(2�)4 eip⋅x ⋅
×∫ dp0|2p0| [�(p0 − !p) + �(p0 + !p)] e−ip0x0

= ∫ d3p
(2�)4

1

2!p
[e−i!px0 + e+i!px0] eip⋅x. (7.15)

Note: in the application hereM = i� and !2p = p2 − �2 is real. This justifies the use of |p0| in (7.15).
From the last two equations we conclude that

−�(!p) + �(−!p) ∼ 2�i �(p2 −M2), (7.16)

which proofs the conjecture (QED).
ForM� = i� andM∗� = −i� we have[p2 −M2� + i0] → P(p2 + �2)−1 − i��(p2 + �2),[p2 −M∗2� + i0] → P(p2 + �2)−1 − i��(p2 + �2).

Therefore, using (7.13), we find that withM� = −M∗� = i�
∆̃(p;M2� ) = 1

2

[
∆̃(1)(p;M2� ) + ∆̃(2)(p;M2� )

]
= P 1

p2 + �2 . (7.17)

We note that in the one-graviton-exchange diagram Fig. 2 we have on-energy-shell external particles
that p0 = 0. Then, p2 + �2 → −(p2 − �2), which is used in (9.10).

VIII. GRAVITON-MASS AND THE PERIHELIUM-PRECESSIONOF PLANETS

We want to compute the finite-mass corrections to the massless spin-2 perihelium-precession of
the planets. In this section, and henceforth, we denote the graviton mass by �G , the mass of the Sun
by M, and the mass of Mercury by m.
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The propagator for the (massive) ℎ��-field, for � = 1, see Eqn. (5.4), reads

D��,��(x;�2G)F =
1

2

(������ + ������ − ������) ∆F(x;�2G)
+
1

6
������ [∆F(x;�2G) − ∆F(x;M2� )

]
(8.1a)

∶= ∆
��,��F,0 (x;�2G) + �∆��,��F (x;�2G), (8.1b)

where ∆
��,��F,0 (x) in the lim�G→0 is the propagator for the massless spin-2 particle, and

�∆F,��,��(x;�2G) ≡ ∆(S)��,��(x;�2G) + ∆(SG)��,��(x;�2G), (8.2)

where

∆
(S)��,��(x;�2G) = +

1

6
������∆F(x;�2G), (8.3a)

∆
(SG)��,��(x;�2G) = −

1

6
������∆F(x; −2�2G) (8.3b)

As noted before, in the massless lim�G→0 the propagatorD��,��F (x;�2G) corresponds to a massless graviton.
Therefore it gives the Einstein prediction for the perihelium precession.

A. Interaction Spin-2 Particles with a Scalar-field

In general-relativity [25, 26] the Lagrangian for a neutral scalar field, mass m, invariant under gen-
eral coordinate transformations in a gravitational field described by the metrc g��, is given by

ℒS = 1

2

√
−g (g��D��D�� −m2�2) , (8.4)

where g = det g�� , likewise � = det ��� = −1. In the "weak field" approximation we write

g�� = ��� + � ℎ��, g�� = ��� − � ℎ�� , (8.5)

where � ∝
√G with G is the Newtonian gravitational constant. Note that the signs in (8.5) are

consistent with g��g�� = ���.
In the following the lowering and raising of the indices is done with the ��� = ���-tensor.
Using

g ≈ � (
1 + � ℎ��) , √−g ≈ 1 +

�
2
ℎ�� , (8.6)

the scalar Lagrangian in the weak-field approximation is

ℒS =
1

2

(���)��)�� −m2�2)
−
�
2
ℎ�� )��)�� + �

4
ℎ�� (���)�)� −m2�2)

≡ ℒ(0)S + ℒintS , (8.7)
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with

ℒintS = −
�
2
ℎ�� )��)�� + �

4
ℎ�� (���)�)� −m2�2)

= −
�
2
ℎ�� [)��)�� − 1

2
��� (���)�)� −m2�2)]

≡ −
�
2
ℎ�� t(S)�� , (8.8)

where

t(S)�� = )��)�� − ��� ℒ(0)S (8.9)

the energy-momentum tensor operator for the scalar field.
The momentum expansion for ℎ��(x) field reads

ℎ��(x) = ∫ d3k√
2!(k)(2�)3

5∑
�=1

e��(k, �) [a(k, �)e−ik⋅x + a†(k, �)e+ik⋅x] , (8.10)

and for the (neutral) scalar field [27]

�(x) = ∫ d3p√
2!(p)(2�)3 [a(p)e−ip⋅x + a†(p)e+ip⋅x] , (8.11)

with the commutation relation [a(p), a†(p′)] = �3(p − p′). (8.12)

For the one-particle scalar states we use the so-called "non-relativistic normalization":

|p⟩ = a†(p)|0⟩, ⟨p|p′⟩ = �3(p − p′). (8.13)

Matrix elements for the energy-momentum operators, using normal-ordering, is

⟨p′| ∶ t��(x) ∶ |p⟩ = exp i(p′ − p) ⋅ x
(2�)3√4E(p′)E(p) [

(p′�p� + p′�p�
)
− ��� (p′ ⋅ p −m2)] , (8.14a)

⟨P′| ∶ T�� ∶ |P⟩ = exp i(P′ − P) ⋅ x
(2�)3√4ℰ(P′)ℰ(P) [(P′�P� + P′�P�) − ��� (P′ ⋅ P −M2)] . (8.14b)

The (spin-0)-( spin-2) vertex is given by

⟨p′|− i∫ d4xℋ(S)int (x)|p, k⟩ ≡ (2�)4i�4(p′ − p − k) e��(k, �)Γ��(p′, p) ⋅
×
[
(2�)9 8E(p′)E(p)!(k)]−1∕2 (8.15)

Using

⟨0|ℎ��(x)|k, �⟩ = [
(2�)3 2!(k)]−1∕2 e��(k, �) e−ik⋅x , (8.16)

(8.15) leads to

⟨p′| − i∫ d4xℋ(S)int (x)|p, k⟩ = −i(�∕2) [(2�)9 8!(p′)!(p)!(k)]−1∕2 ⋅
×(2�)4�4(p′ − p − k) ⋅ e��(k, �) { (p�p′� + p′�p�) − ���(p′ ⋅ p −m2)} , (8.17)

23



∆
��;��
F (k)

T�� t��
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FIG. 2: Graviton-exchange between mass M and mass m.

which leads to

Γ��(p′, p) = −(�∕2) [ (p′�p� + p′�p�) − ��� (p′ ⋅ p −m2)] . (8.18)

We notice that Γ��(p′, p) = Γ��(p′, p) and (p′ − p)�Γ�� = 0. This gives for the matrix elements of the

energy-momentum operators T�� and t��
T̃��(P′, P) = [ (P′�P� + P′�P�) − ��� (P′ ⋅ P −M2)] , (8.19a)

t̃��(p′, p) = [ (p′�p� + p′�p�) − ��� (p′ ⋅ p −m2)] . (8.19b)

Propagators:

∆
(m)��;��(k) =

P(m)��;��(k)
k2 − �2G + i� ,

P(m)��;��(k) =
1

2

(������ + ������) − 1

3
������ , (8.20a)

∆
(0)��;��(k) =

P(0)��;��(k)
k2 − �2G + i� ,

P(0)��;��(k) =
1

2

(������ + ������ − ������) . (8.20b)

For distinguishing the massless and massive case convenient is the common notation

P(a)��;��(k) = 1

2

(������ + ������) − a ������ , (8.21)

where a=1/2 and 1/3 for the massless and massive case respectively.
The amplitude corresponding to the Feynman graph Fig. 2, for the Feynman rules see [28], chapter 14,
is

S(2)fi = (+i)2 (�2∕4)Nf(P′, p′)Ni(P, p) ∫ d4k
(2�)4 (2�)4�4(P′ − P + k) ⋅

×(2�)4�4(p′ − p − k) ⋅ ⟨P′|T��|P⟩ i∆(m)��;��(k) ⟨p′|t��|p⟩
= −i(�2∕4) (2�)4�4(P′ + p′ − P − p)Nf(P′, p′)Ni(P, p) ⋅

×T��(P′, P) ∆(m)��;��(k) t��(p′, p)
≡ −i(2�)4�4(P′ + p′ − P − p)Nf M(2)

fi Ni (8.22)
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with k = p′ − p = P − P′, and
Ni(P, p) = [

(2�)6 ℰ(P) E(p)]−1∕2 , Nf(P′, p′) = [
(2�)6 ℰ(P′) E(p′)]−1∕2 . (8.23)

Here E(p) = !(p),ℰ(P) = !(P) etc.
With a = 1∕3 and a = 1∕2 for the massive (m) and massless (0) case respectively, one gets for the

invariant amplitude the expression

M(2)
fi (P′, p′;P, p) = 1

4
�2 ⟨P′|T��|P⟩ ∆(m,0)��;��(k) ⟨p′|t��|p⟩ = 1

4
�2 ⋅

×
[(P′�P� + P′�P�) − ���(P′ ⋅ P −M2)] ⋅ {1

2

(������ + ������) − a ������} ⋅
×
[(p′�p� + p′�p�

)
− ���(p′ ⋅ p −m2)

] ⋅ [k2 − �2G + i�]−1 =
1

2
�2 {(P′ ⋅ p′)(P ⋅ p) + (P′ ⋅ p)(P ⋅ p′) − 2a (P′ ⋅ P)(p′ ⋅ p)

−2(4a − 1)M2m2 + (4a − 1)
[m2 (P′ ⋅ P) +M2 (p′ ⋅ p)] } ⋅ [k2 − �2G + i�]−1 . (8.24)

Now, k = p′ − p = P − P′ which gives with P2 = P′2 = M2 and p2 = p′2 = m2,
k2 = (P′ − P)2 = 2M2 − 2P′ ⋅ P = (p′ − p)2 = 2m2 − 2p′ ⋅ p,
P′ ⋅ P = M2 − 1

2
k2, p′ ⋅ p = m2 − 1

2
k2,

and similar expressions for P′ ⋅ p, P ⋅ p′ in the Mandelstam variables s = (P + p)2 = (P′ + p′)2 andu = (P − p′)2 = (P′ − p)2. In the C.M.-system, P = −p and P′ = −p′, and k = p′ − p, q = (p′ + p)∕2.
p = q − 1

2
k, p′ = q + 1

2
k. (8.25)

The scalar products in the C.M.-system read, taking the external particles on the energy shell i.e. p2 =
p′2, giving k2 = −k2, q ⋅ k = 0. Evaluating the scalar products in (8.24) in the C.M.-system, we expand
in 1∕Mm. Then, we obtain the leading terms

M(2)
fi (P′, p′;P, p) ≈ −

1

4
�2 (2Mm)2 {(1 − a) + (M +m)2

M2m2 (q2 + 1

4
k2)

+
(2a − 1)(M2 +m2) − 2Mm

4M2m2 k2} (k2 + �2G − i�)−1 . (8.26)

In Appendix A, the connection between the invariant amplitude M(2)
fi and the potential

in the Lippmann-Schwinger (or Schrödinger) equation is given by (A18)

V(pf , pi) ≈ �
2Mm (1 − M2 +m2

4M2m2 (q2 + k2∕4))M(2)(pf , pi;W)

≈ −
�
2
[�2 Mm] {(1 − a) + 2a(M2 +m2) − (M +m)2

4M2m2 k2

+ [ (M +m)2
M2m2 − (1 − a)M2 +m2

4M2m2 ] (q2 + 1

4
k2)} ⋅

×
(k2 + �2G − i�)−1 . (8.27)
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1. Massless case, a=1/2: From (8.27) the on energy-shell potential becomes

V(0)
fi (P′, p′;P, p) = −

�
4
[�2 Mm] {1 + 7M2 + 16Mm + 7m2

4M2m2 (q2 + 1

4
k2)

−
k2Mm } ⋅ [k2 + i�]−1 . (8.28)

The potential in momentum space from the leading term is

V(0)(r) = ∫ d3k
(2�)3 eik⋅x V(0)(p′,p) = −

�2Mm
16

1r ⇒ −
GMmr , (8.29)

i.e. equating this potential to the Newton potential we get, using units ̸ℎ = c = 1,

�∕4 = √G = 1.616 × 10−33 cm (Planck length). (8.30)

2. Massive case, a=1/3: From (8.27) the on energy-shell potential becomes

V(m)
fi (pf , pi) = −

2�
6
[�2 Mm] {1 + 5M2 + 12Mm + 5m2

4M2m2 (q2 + 1

4
k2)

−
M2 + 6Mm +m2

2Mm k2
4Mm } ⋅ [k2 + �2G]−1 (8.31)

In the C.M.-system we write V(2)(P′, p′;P, p) ≡ (2�)−6V(m)(p′,p), and the configuration space poten-
tial is given by

(x′|V|x) = ∫ d3k
(2�)3 ∫ d3q

(2�)3 eik⋅(x
′+x)∕2 eiq⋅(x′−x) V(k,q). (8.32)

From (8.31) one gets, neglecting for the moment the k2 and q2 terms, the C.M.-system local potential
becomes

V(m)(r) = ∫ d3k
(2�)3 eik⋅x V(m)(p′,p) = −

�2Mm
12

e−�Grr . (8.33)

Note that for very small �G we have
V(m)(r) ≈ 4

3
V(0)(r), (8.34)

i.e. the massless limit of the massive potential is off by a factor 4/3, a well known fact [1].

B. Perihelium Precession

1. Massless case: We analyze the k2- and q2-term in the momentum space potential (8.28), which we
write as

V(0)(p′,p) = −(4�GMm) {1 − k2Mm +
7(M +m)2 + 2Mm

4M2m2 (q2 + 1

4
k2)} ⋅

×
[k2 + �2G − i�]−1 . (8.35)
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Here, we introduced the graviton mass �G because we want to analyze the massless limit. So, in (8.35) the
massless graviton projection operator is used in the propagator.

(a) The central term in (8.35) gives the Newtonian potential

V(0)(r) = − [GMm] e−�Grr with �G = 0. (8.36)

(b) The k2-terms in (8.31) and (8.35) give terms with −4��3(r) which in the planetary motion do not
contribute and hence can be dropped.

(c) The Fourier transformation to configuration space of the non-local (q2 + k2∕4)-term is 14

(
r|V(1)| ) = −

7(M +m)2
8M2m2 ((2V(0)(r) + V(0)(r)(2)  (r). (8.37)

The Schrödinger equation reads

(− (2
2mred + V)  = E  (mred = MmM +m) ,

and gives the possibility of the replacement (2 → 2mred(VC − E), where VC is the total central
potential. (The spin-spin, tensor and spin-orbit potentials in V are of order 1∕Mm and can be ne-
glected.) For (very) small �G we have VC = −A GMm∕r = A V(0). From

[
(2,VC(r)] (r) =[

[(2VC(r)] + 2(VC(r) ⋅ (] (r) neglecting( [30] and the (2-term, which gives≈ �3(r) contribution,
the contribution of the non-local term gives the correction to the Newton-potential

V(1)(r) ≈ −2mred 7(M +m)2
4M2m2 V(0)(r) [VC(r) − E]

= −
7

2m
(
1 +

mM
) GMmr [AGMmr + E]

⇒ −
7A
2m

[V(0)]2m ∼ 1∕r2 (M ≫ m). (8.38)

In the last stepwe used that in a planetary orbit E= constant, and the E-term in (8.38) gives a correction
to theNewtonian potentialwhichmeans a smallmodification of the orbit. Henceforth, being interested
here only in the 1∕r2 potential, we omit the E-term.
We see that the non-local potential gives a 1∕r2 correction leading to a perihelium-precession
which is 7∕6× Einstein’s result! This agrees with the treatment of Schwinger [20, 31]. The remaining
−1∕6 comes from the change in the gravitional field energy due to the presence of the planet, see for
discussion [20, 31].

2. Massive case: Following the same steps as for the massless case, taking into account that V(m)C =

(4∕3)V(0)(r) and the non-local term with 5/3 instead of 7/4, we obtain

V(1)(r) ⇒ −
40A
9m

[V(0)]2 . (8.39)

14 A potential term V(k, q) = Ṽn.l.(k) (q2 + k2∕4) gives in coordinate space, see [29] Eqn. (11),
V (1)(r) = −12

((2Vn.l.(r) + Vn.l.(r)(2) .
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Below we show that the contributions from the scalar (section IXA) and ghost (section IXB) to the non-
local potential cancel each other in the massless limit. Therefore, the total result for the 1∕r2 correction to
the Newtonian potential from the ℎ��-field is given by (8.38). Furthermore, corrections to the perihelium
precession for a finite mass �G turn out proportional to �2G and are tiny, see section X.
We see that the non-local potential gives a 1∕r2 correction leading to a perihelium-precession
which is 7∕6× Einstein’s result! This agrees with the treatment of Schwinger [20, 31]. The remaining
−1∕6 comes from the change in the gravitional field energy due to the presence of the planet, see for
discussion [20, 31].

IX. SCALAR CONTRIBUTIONS PERIHELIUMPRECESSION

In this section we derive the contribution to the perihelium precession from the scalar and scalar-

ghost terms in the ℎ��-propagator ∆��,��F (x;�2G) (8.2).
A. Scalar-exchange: Perihelium Precession

The amplitude corresponding to the Feynman graph Fig. 2, for scalar-exchange is, in analogy with
Eqn. (8.22), given by

S(2)fi = (+i)2 (�2∕4)Nf(P′, p′)Ni(P, p) ∫ d4k
(2�)4 (2�)4�4(P′ − P + k) ⋅

×(2�)4�4(p′ − p − k) ⋅ ⟨P′|T��|P⟩ i∆(S)��;��(k) ⟨p′|t��|p⟩
= −i(�2∕4) (2�)4�4(P′ + p′ − P − p) T��(P′, P) ∆(S)��;��(k) t��(p′, p)
≡ −i(2�)4�4(P′ + p′ − P − p)Nf M(S)

fi Ni (9.1)

where

∆
(S)��;��(k) =

P(S)��;��(k)
k2 − �2G + i� , P

(S)��;��(k) = 1

6
������. (9.2)

Up to terms of order 1∕M2 and 1∕m2, taking only the terms proportional to the parameter a in the
expression (8.27) and putting a = −1∕6, one finds

M(2)
fi (P′, p′;P, p) ≈ −

1

24
�2 (2Mm)2 {1 − (M2 +m2) −Mm

2M2m2 k2} (k2 + �2G − i�)−1 . (9.3)

In Appendix A, the connection between the invariant amplitude M(2)
fi and the potential in the

Lippmann-Schwinger (or Schrödinger) equation is given by (A18)

V(S)(pf , pi) ≈ �
2Mm (1 − M2 +m2

4M2m2 (q2 + k2∕4))M(S)(pf , pi;W)

≈ −
�
12
[�2 Mm] {1 − (M2 +m2) −Mm

2M2m2 k2

−
M2 +m2
4M2m2 (q2 +

1

4
k2)} ⋅ (k2 + �2G − i�)−1 . (9.4)
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ℑp0

ℜp0 = R

RΓ

FIG. 3: Complex p0-plane contour Γ = R + �(−!p) − �(!p). Here, �-operator is Leray’s coboundary operator.

The central potential in the CM-system is, with �2 = 16G,
VSC(r) = −

�
12

[�2 Mm]∫ d3k
(2�)3

e(ik⋅r)
k2 + �2G = −

1

3
[GMm] e−�Grr . (9.5)

The contribution of the non-local term gives the correction to the Newtonian potential

V(1)(r) ≈ +2mredM2 +m2
4M2m2 VSC(r) [VC(r) − E]

⇒ +
A
2m

[V(0)]2 = +
A
18m [GMm]2 e−2�r

r2 ∼ 1∕r2 (M ≫ m). (9.6)

B. Scalar-ghost-exchange: Perihelium Precession

In Appendix B the details of the scalar interaction with the imaginary-ghost field is analyzed and
worked out in detail, which results are employed in this section.
The amplitude corresponding to the Feynman graph Fig. 2, for scalar-ghost-exchange is, in analogy
with Eqn. (8.22), given by

S(2)fi = (+i)2 (�2∕4)Nf(P′, p′)Ni(P, p) ∫Γ
d4k
(2�)4 (2�)4�4(P′ − P + k) ⋅

×(2�)4�4(p′ − p − k) ⋅ ⟨P′|T��|P⟩ i∆(SG)��;��(k) ⟨p′|t��|p⟩
= −i(�2∕4) (2�)4�4(P′ + p′ − P − p) T��(P′, P) ∆(SG)��;��(k) t��(p′, p)
≡ −i(2�)4�4(P′ + p′ − P − p)Nf M(SG)

fi Ni (9.7)
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where

∆
(SG)��;��(k) = −

1

6
������ ∆̃F(k; −�2). (9.8)

Here, the imaginary ghost-mass is −�2 ≡ M2� = −2�2G . The proper integration contour Γ, see Fig. 3, in
the complex k0-plane is given as [6] Γ = R− �(!k)+ �(−!k), where �(±!k) denotes a counterclockwise
circle around the poles at ±!k [24]. (Note that for a real mass M� the Γ-contour becomes the usual
countour for the Feynman propagator CF .)
The Feynman propagator function in (9.8) is

∆̃(k;M2� ) =
1

2

[
∆̃(1)(k;M2� ) + ∆̃(2)(k;M2� )

] , (9.9a)

∆̃(1)(k;M2� ) =
1

k2 −M2�
, ∫ d4p

(2�)4 →∫ d3k
(2�)3 ∫

Γ
dk0
(2�) , (9.9b)

∆̃(2)(k;M2� ) =
1

k2 −M∗2�
, ∫ d4p

(2�)4 →∫ d3k
(2�)3 ∫

R
dk0
(2�) . (9.9c)

Up to terms of order 1∕M2 and 1∕m2, taking only the terms proportional to the parameter a in the
expression (8.26) and putting a = +1∕6, one finds

M(SG)
fi (P′, p′;P, p) ≈ +

1

24
�2 (2Mm)2 {1 − (M2 +m2) −Mm

2M2m2 k2} P 1

k2 − �2 . (9.10)

Here, we used ∆̃(k,M2� ) = P(k2 − �2)−1, which is derived explicitly in Appendix VIIA.
In Appendix A, the connection between the invariant amplitude M(2)

fi and the potential in the

Lippmann-Schwinger (or Schrödinger) equation is given by (A18)

V(SG)(pf , pi) ≈ �
2Mm (1 − M2 +m2

4M2m2 (q2 + k2∕4))M(SG)(pf , pi;W)

≈ +
�
12
[�2 Mm] {1 − (M2 +m2) −Mm

2M2m2 k2

−
M2 +m2
4M2m2 (q2 +

1

4
k2)} ⋅ P 1

k2 − �2 . (9.11)

The central potential in the CM-system is

VSGC (r) = +
�
12
[�2 Mm]∫ d3k

(2�)3 P
e(ik⋅r)
k2 − �2 = +

1

3
[GMm] cos(�r)r . (9.12)

The contribution of the non-local term gives the correction to the Newtonian potential

V(1)(r) ≈ +2mredM2 +m2
4M2m2 V(SG)C (r) [VC(r) − E]

⇒ −
A
2m

[V(SG)C V(0)] = +
A
18m [GMm]2 cos(�r)

r2 ∼ 1∕r2 (M ≫ m). (9.13)

The total result for the non-local 1∕r2-potential from massive and scalar-ghost is

V(1)(total) = V(1)m + V(1)SG → +
7A
2m

[V(0)]2 (9.14)

for lim�G → 0. Below we will show that the correction for the finite graviton mass ∼ �2G ,
which is very small.
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X. RESULTS PERIHELIUMPRECESSION

Taking for the definition of the gravitational constant that which occurs in themassless case�G = 0,
i.e. �2 = 16G, the gravitational potential in momentum space is of the form

V(pf , pi) = −4� [GMm] {A + Bk2∕m2 − C (q2 + 1

4
k2) ∕m2} ⋅

×(2�)−6 (k2 + �2G − i�) . (10.1)

Here A,B, and C contain the total contributions, i.e. A =
∑

i Ai etc. where Ai, Bi, Ci come from the
individual contributions. In coordinate space we get for the central and non-local potential

V(0)(r) ≡ −[GMm] e−�Grr , VC(r) = A V(0)(r), (10.2a)(
r|V(1)| ) = +

1

2
C ((2V(0)(r) + V(0)(r)(2)∕m2. (10.2b)

Making the approximation ( ≈ 0, and (2V(0) ∼ �3(r) → 0 for the planetary motion, leads to
[(2,V(0)(r)] ≈ 0. Then, as described above, using the Schrödinger equation one makes the replace-
ment (2 → 2mred(VC − E) where mred = m. Then, we arrive at the correction to the Newtonian
potential, see [29] Eqn. (33),

V(1)(r) ≈ 2mred
(C∕m2) V(0)(r)[VC(r) − E]

⇒ 2CA
[V(0)]2
m = 2 (AC∕m) [GMm]2∕r2 (M ≫ m). (10.3)

As explained above the contribution of the k2-term can be neglected in the central potential.

Exchange Propagator A B C

I: Massless ∆(0)��,�� 1
m
M − 7

4
II: Massive ∆(m)��,��

4
3

m
M − 1

6 − 5
3

III: Ghost ∆(SG)��,�� − 1
3 + 1

6 − 1
12

IV: "Scalar" ∆(S)��,�� 1
3 − 1

6 + 1
12

TABLE I: CoefficientsA, B, C for the different exchange types

In Table I the coefficients A,B, and C are listed for the exchanges calculated in this paper. The
propagators are explicitly defined in Eqn’s (8.1-8.3). Adding the contributions II and III gives I, as
expected.

The results in Table I show that in the lim�G→0 the ℎ�� propagator leads to the mas-
less graviton contribution for the perihelium precession, due to the combination of the
massive spin-2 and ghost contributions: from Table I we obtain AC = (4∕3 − 1∕3) ∗
(−5∕3−1∕12) = −7∕4, which corresponds to the value for themassless propagator. Then,
V(1)(r) = 2AC[V(0)(r)]2∕m = −(7∕2m)[V(0)(r)]2.
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In this treatment using the V(1)-interaction the change in the gravitational field energy due to the
presence of the sun and the planet is not included. In Appendix C we review the derivation of this

effect, which give a contribution
[V(0)]2 ∕2m. Including this we get in total V(1) = −(3∕m) [V(0)]2,

which agrees with Einstein’s result.

Remark: We note that this 1∕r2 correction to the Newton potential does agree with the
−(3V2∕m + V2∕2m)-correction in Ref. [20] below formula (52). In [20, 31] the −3V2∕m
comes from

Eint = −
2GMr (√p2 +m2 − 1

2

m2√p2 +m2)
≈ −

GMmr [1 + (1 + 1

2
) p2m ] ,

and −V2∕2m comes from the relativistic correction to the kinetic energy of the planet: T →√p2 +m2 −m replacing T by T − T2∕2m ∼ T − (E − V)2∕2m.
The planetary equation for the massless graviton, with the inclusion of the gravitational field energy
between the planet and the sun reads, see [31] Eqns (2-4.55)-(2-4.60),

d2u0d'2 + u0 = −
1

L21
ddu
V(0)effm , (10.4a)

V(0)eff = V − 3V2∕m, V = −GMm∕r, (10.4b)

where u = 1∕R ≡ 1∕d and L1 is the angular momentum per unit planetary mass. This gives (in units
c=1)

d2u0d'2 + (1 − 6G2M2
L21

)u0 = GM

L21
, (10.5)

leading to the non-newtonian correction to the perihelium precession angle

∆'E = 6�G2M2∕L1)2 = 6�
(
1 +

mM
)GM∕L, (10.6)

where L−1 = (1∕r++1∕r−)∕2 = �GMm∕J2. Here, r± are the apohelium and perihelium distances. The
connection with Einstein’s result [25] is given by the relation GM∕L1 = 2�(a∕T)(1 − e2)−1∕2, where a
is the semimajor axis, T is the period, and e is the eccentricity.
In Table II the results for the ∆'E correction to the perihelium precession per century are listed for
Icarus, Mercure, Venus, Earth, andMars. The astronomical data in the following tables are taken from
Ref. [32].

A. Finite-mass and Ghost correction Perihelium-precession

The finite-mass correction are due to the differences

�(1)∆��,��F (x − y;�2G) = 1

2

(������ + ������ − ������) ⋅
×
[
∆F(x − y;�2G) − ∆F(x − y;�2G = 0)

] , (10.7a)

�(2)∆��,��F (x − y;�2G) = 1

6
������ [∆(S)F (x − y;�2G) − ∆

(SG)F (x − y;�2G = 0)
] . (10.7b)
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Planet Icarus Mercury Venus Earth Mars
Mass 0.24510−12 0.055 0.820 1.000 0.110rmin(AU) 0.186 0.307 0.717 0.981 1.524� 0.827 0.206 0.0068 0.0167 0.0915
Period 409 87.97 224.70 365.26 686.98J 0.157 × 10−12 0.091 1.80 2.70 0.35
L1 0.48 0.111 0.154 0.182 0.235
n 89.3 415.2 162.5 100.0 53.17n∆' 9.8 ± 0.8 43.1 ± 0.5 8.4 ± 4.8 5.0 ± 1.2 1.52

GRT/RFT 10.0 43.0 8.6 3.8 1.63

TABLE II: The Solar System. Mass planet mpl in earth masses, rmin(AU), � eccentricity, J = 2�mplr2min∕T:
orbital angular momentum (units 1040kg m2∕s), L1: angular momentum per unit mass ( units 1016m2 s−1), n
(orbits per century), n∆': (arc sec/century), and GRT/RFT results. Earth mass M⊕ = 5.97 × 1024 kg and the
solar massM⊙ = 1.98892 × 1030 kg.

Planet Jupiter Saturn Uranus Neptune
Mass 318 95.4 14.5 17.1rmin(AU) 4.995 9.041 18.330 29.820� 0.0484 0.0539 0.0473 0.0095
Period 4333 10759 30687 60190J 791 321 69.2 102
L1 0.416 0.562 0.799 1.000
n 8.42 3.40 1.19 0.61n∆'∗ 0.634×10−1 0.137×10−1 0.240×10−2 0.777×10−3

GRT/RFT∗∗ 0.621×10−1 0.136×10−1 0.237×10−2 0.773×10−3

TABLE III: The Solar System II. Mass planet mpl in earth masses, rmin(AU), � eccentricity, J = 2�mplr2min∕T:
orbital angular momentum (units 1040kg m2∕s), L1: angular momentum per unit mass ( units 1016m2 s−1), n
(orbits per century), n∆': (arc sec/century), GRT/FT results. Earth mass M⊕ = 5.97 × 1024 kg and the solar
massM⊙ = 1.98892 × 1030 kg. Program calculation ∗), Literature ∗∗).

From the inspection of Schwinger’s computation [31] Eqs. (2-4.36,37),

Eint(y0) = −GM∫ d3y 1|x− y| [t00 − tkk] (y0,y),
and using (10.7) we get

�(1)Eint(y0) = −GM∫ d3y 1|x− y| [e−�G|x−y| − 1
] t00(y0,y), (10.8a)

�(2)Eint(y0) = −
1

3
GM∫ d3y 1|x− y| [e−�G|x−y| − cos(�G|x− y|)] t00(y0,y). (10.8b)

With the Sun in the center x = 0, using the limit �G < 10−57me and for the distance Mercury-Sund ∶= |r⨀ − rm| ≈ 60 1060m = 1.44 1023ℏ∕mec, we find that �G|y| < 1.44 10−34 <<<< 1. Lett00(y0,y) ∼ m∕Vm, i.e. a homogeous and static mass distribution inside Mercury. Then,
�Eint(y0) = �(1)Eint(y0) + �(2)Eint(y0) = GMm[(e−�Gd − 1

)
+
1

3

(e−�Gd − cos(�Gd))]∕d
≈ [GMm] [−4

3
+
5

6
(�Gd)]�G , (10.9)
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where we expanded the exponential and cosine in (10.9) keeping only terms up to the quadratic ones
in the graviton mass. The first term in (10.9) adds a constant to the potential energy, which gives no
contribution to the gravitational force and hence no contribution to the perihelium-precession 15. The
second term: the equation of an orbit becomes

d2u
d'2 + u = −

1

L21
ddu
Veffm , Veff∕m = V(0)eff∕m +

5

3
GM �2G∕u, (10.10)

where u = 1∕R ≡ 1∕d and L1 is the angular momentum per unit planetary mass. From (10.9) we have

Veff∕m) = −GM u − 3G2M2u2 + 5

3
GM �2G∕u, (10.11a)

ddu
Veffm = −GM − 6G2M2u − 5

3
GM (�Gu )2 , (10.11b)

so that

d2u
d'2 + (1 − 6G2M2

L21
) u =

GM

L21
+

5

3L21
(�G
u
)2 . (10.12)

If u0 is the orbit for �G = 0 we have 1∕u2 ≈ 1∕u20 − 2∆u∕u30. Writing (10.12) as

u′′ + Au = B + C∕u2 ≈ B + C�2G ( 1

u20 − 2
u − u0
u30 ) , or

u′′ + (A + 2C�2G∕u30)u ≈ B + 3C�2G∕u20.
and (10.12) can be written approximately as

d2ud'2 + (1 − 6G2M2
L21

+ 10GM
3L21

�2G
u30
) u = GM

L21
(1 + 5 (�G

u0 )
2) . (10.13)

The factor (...) on the r.h.s. means a constant multiple of the Newtonian potential V = −GMm∕R and
does not produce a perihelium precession, it only changes slightly the scale of the orbit. The factor
on the l.h.s. multiplying the u-term brings a scaling factor for the angle, and leads to a shift in the
perihelium precession, quadratic in the graviton mass,

�' = −2�5GM3L21
�2G
u30
. (10.14)

The ratio with the ∆'E (10.6) is
�'
∆'E = −59(�GR)2 (GMRc2 )

−1 . (10.15)

Now, Gm2F∕ℏc is dimensionless, which implies that
GM

Rc2 = [Gm2F
ℏc

] M

mF [ ℏ

mFc∕R]
15 Mass of the Sun M⨀ = M = 1.99 1030 kg, mass of the Earth M⨁ = 5.97 1024 kg, mass of Mercury m= 0.053 M⨁, electron
mass me= 9.11 10−31 kg.

34



is also dimensionless. HeremF = ℏc = 197.32MeV is the Fermi mass. So, in atomic units ℏ = c = 1
we have

�'

∆'E = −59 ( �GmF )
2 (mFR)3mF

M

[
Gm2F

]−1
. (10.16)

The corrrection to Einstein’s result is proportional to the square of the graviton mass and
vanishes for �G → 0
Estimation: Using

√
G = 1.62×10−33 cm = 1.62×10−20 fm, one has Gm2F ≈ 2.7×10−40. The ratio

mF∕M ≈ 400me∕M = 2×10−58. Assuming R ≈ 108km, givesmFR ≈ 1026, insertion these numbers in
(10.16) gives

�'

∆'E ≈ −59 ( �GmF )
2 ⋅ 10+78 ⋅ 2×10−58 ⋅ 10+40∕2.7 ≈ −1027 ( �GmF )

2 ⋅ 1060. (10.17)

From more recent work [9–12] the upper limit for the graviton mass seems to be �G ≤ 7×10−32 eV =
2×10−38 me ≈ 0.5×10−40 mF . This gives |||�'∕∆'E||| ≤ 10−21, which is very tiny.
The Einstein correction ∆'E = 43′′.03/century, and experiment gives ∆'exp = 41′′.4 ± 0′′.90/century
[33]. For a deviation of the order of the error �'∕∆'E ≈ 0.01 we find from (10.16) �G ≈ 10−28me, i.e.
ten orders of magnitude larger than the upper limit above.

B. Non-NewtonianModified Gravity

The non-relativistic two-body gravitational potential is

V(r) = VN(r) + VSC(r) + VSG(r) = −[GMm]e−�Grr −
GMm
3r [e−�Gr − cos(�Gr)] . (10.18)

with �G ≈ 10−40mF . The range of the Yukawa part is r0 = 1025m ≈ 109 light year. The correction to
the Newton-potential in (10.18) is ∆V(r) = (2GMm∕3c2) [1 + �Gr∕4 + ....] �Gc2, having a long-range
repulsive part, which is very small. For �Gd ≈ 1 → d ≈ 2 × 109 ly, whereas the radius of the universerU ≈ 46.5 × 109 ly.

XI. DISCUSSIONAND CONCLUSIONS

We found in this section that by choosing the constants suitably, and performing a couple of field
transformations,we can eliminate the unwanted helicity components in themassless limit. Therebywe
arrive at a satisfactory massless spin-2 theory. This in accordance with the Dirac quantization method
for spin-2 fields using auxiliary vector and scalar (ghost) fields.
We found theories of the kind: (i) −∞ < � ≤ 0: scalar-tensor theory containing massive spin-2 and
spin-0 particles with in the massless limit a "Brans-Dicke" [34] model, (ii) � = 1: a massive spin-2 and
an imaginary-ghost spin-0 particles with a proper massless limit, giving a relativistic gravitation field
theory in Minkowski space (RGFT). It is found that in (ii) one can perform an expansion in the (small)
graviton mass, without destroying the correct prediction for the perihelium precession of Mercury.
Therefore, in the treatment of the massive spin-2 field with auxiliary fields and the Dirac quantization
method, a continuous and smooth change in the perihelium precession as a function of the graviton
mass can be realized, albeit necessary to introduce a ghost-field.

35



The eventual connection with the cosmological constant gives strong conditions on the possible
mass �G of the graviton, leading to negligible corrections. Also, the non-newtonian corrections are
very small for the solar-system.
In contrast to the RGT [35], which needs to have �G ≠ 0 in essence, the introduction of the imaginary-
ghost does not have dramatic consequences for the black-holes. Comparison of the calculation of the
perihelium precession in [36] and [35] the effect of �G in the latter is apparently ignored. According to
[1] this seems not justified.
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Appendix A: BS-equation and LS-equation

In this appendixwe consider the Bethe-Salpeter equation (BSE) in the normalizationused in [27] for
scalar external particles. To start, we note that in [27] the Feynman rules give the invariant amplitude−iM. For scalar-exchange the potential is readily seen using the Feynman-rules [27] to be given as

V(P′, p′;P, p) = g2
q2 − �2 + i� (A1)

Here, the external momenta are (P′, p′) and (P, p) for the final and initial state respectively. The
exchange momentum is q = p′ − p = P − P′.
The total and relative momenta for the initial, final, and intermediate states are defined as

pa = �aP + p, pb = �bP − p, p′a = �aP′ + p′, p′b = �bP′ − p′,
ka = �aKn + k, kb = �bKn − k, Kn = ka + kb. (A2)

In the following we use for the weights �a = �b = 1∕2. From the conservation of the total momenta,
i.e. Pi = Pf = Kn ≡ W, the dependence of the amplitude and potential is given by

M(P′, p′;P, p) ≡ M(pf , pi;W), V(P′, p′;P, p) ≡ V(pf , pi;W). (A3)

Pf ,Mf

pf , mf

Pi,Mi

pi, mi

=

Pf ,Mf

pf , mf

Pi,Mi

pi, mi

+

4 kn,Mn

−kn, mn

Pf ,Mf

pf , mf

Pi,Mi

pi, mi

FIG. 4: BS-Integral Equation

pa

Pb

p′a

P′b

q

(a)

⨁ ⨁ ⋯

pa

Pb

p′a

P′b

q1 q2

ka

Kb

(a’)

FIG. 5: One-meson and planar two-meson exchange etc. Feynman graphs. The solid lines denote scalar heavy
particles, e.g. the sun and the planet. The dashed lines refer to the scalar mesons.

From an anlysis of the planar-box graph for scalar-exchange we infer the BSE, see Fig. 4, for scalar
external particles as

M(P′, p′;P, p) = V(pf , kn;W) +∫d4kn V(pf , kn;W) Gn(kn;W)M(kn, pi;W) (A4)
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with

Gn(kn;W) = i[(12W + kn)2 −M2 + i�] [(12W − kn)2 −m2 + i�] (A5)

Equation (A5) can easily be read off from the amplitude for the planar-box graph depicted in Fig. 5.
In the application to planetary motion in these notes, the particles, planets and sun, off-energy-shell
effects are non-existent. Therefore, the amplitude and potential are k0n-independent. The poles of the
Green function Gn(kn;W), see Fig. 6, are at

!±an = k0,±n,a = −12
√s ± ℰ(kn) ∓ i�,

!±bn = k0,±n,b = +12
√s ± E(kn) ∓ i�, (A6)

1. Positive and negative energy contributions: Integrating over k0n, using the residue theorem, in
the r.h.s. of (A5) we get

∫
+∞

−∞
dk0n Gn(kn;W) = �ℰ(kn) + E(kn)

ℰ(kn)E(kn)
1

s − (ℰ(kn) + E(kn))2 . (A7)

In the low energy approximation, we have

s − (ℰ(kn) + E(kn))2 ≈ M +mmred
(p2i − k2n) , ℰ + E

ℰ E (kn) ≈ M +mMm ⋅
× [1 + (1 − M2 +m2

Mm ) k2n2Mm] ∼ 1m (1 − k2n
2m2) (M ≫ m). (A8)

With this approximation the BSE (A4) becomes

M(pf , pi;W) = V(pf , kn;W) +∫d4kn V(pf , kn;W) gn(kn;W)M(kn, pi;W), (A9a)

gn(kn;W) = �ℰ(kn) + E(kn)
ℰ(kn)E(kn)

1
s − (ℰ(kn) + E(kn))2 (A9b)

≈ �
Mm(1 + k2n∕2m2

2mred
p2i − k2n + i� (A9c)

The transition to the Lippmann-Schwinger equation (LSE) is made by the transformation

T(pf , pi) = N(pf)M(pf , pi;W) N(pi), V(pf , pi) = N(pf) V(pf , pi;W) N(pi), (A10)

where

N(p) =
√
2�ℰ(p) + E(p)

ℰ(p)E(p) ≈
√ �

2Mm (1 − p2
4m2) (M ≫ m). (A11)

So the potential for the LSE at low energy becomes

V(pf , pi) = N(pf) V(pf , pi;W) N(pi) ≈ �
2Mm

⎛⎜⎝1 −
p2f + p2i
4m2

⎞⎟⎠V(pf , pi;W)

= �
2Mm (1 − q2 + k2∕4

4m2 )V(pf , pi;W). (A12)
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FIG. 6: Poles of the two-particle Green function.

2. No negative energy contributions: We split the intermediate state propagators in the "positive"
and "negative" part as follows:

1( 1
2W + kn)2 −M2 + i�

= 1
2ℰ(kn)

⎡⎢⎢⎣
1(1

2
√s + k0n) − ℰ + i� −

1(1
2
√s + k0n) + ℰ − i�

⎤⎥⎥⎦ ,
1( 1

2W − kn)2 −m2 + i�
= 1
2E(kn)

⎡⎢⎢⎣
1( 1

2
√s − k0n) − E + i� −

1( 1
2
√s − k0n) + E − i�

⎤⎥⎥⎦ .
Neglecting the contributions of the negative-energy states the two-particle Green function is given by

G++n (kn;W) = 1
2ℰ(kn)E(kn)

⎡⎢⎢⎣
1

1
2
(k0n +√s) − ℰ + i� ⋅

1
1
2
(√s − k0n) − E + i�

⎤⎥⎥⎦ . (A13)

As above, the k0n-integration gives
∫

+∞
−∞

dk0n G++n (kn;W) = 2�
ℰ(kn)E(kn)

1√s − (ℰ(kn) + E(kn)) ≡ g++n (kn;W). (A14)

In the low energy approximation, we obtain

g++n (kn;W) = �
2ℰ(kn)E(kn)

1√s − (ℰ(kn) + E(kn))
≈ �

2Mm (1 + M2 +m2
2M2m2 k2n) 2mred

p2i − k2n + i� (A15)

Again, the transition to the Lippmann-Schwinger equation (LSE) is made by the transformation

T(pf , pi) = N(pf)M(pf , pi;W) N(pi), V(pf , pi) = N(pf) V(pf , pi;W) N(pi), (A16)

where

N(p) =√�∕2ℰ(p)E(p) ≈
√ �

2Mm (1 − M2 +m2
4M2m2 p2) (M ≫ m), (A17)
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and the potential for the LSE at low energy becomes

V(pf , pi) = N(pf) V(pf , pi;W)N(pi) ≈ �
2Mm ⋅

× (1 − M2 +m2
4m2M2 (q2 + k2∕4))V(pf , pi;W). (A18)

Notice that forM ≫ m the form with no negative energy
contribution (A18) is equivalent to (A12).
3. Non-local Potential and Schrödinger Equation: For a non-local potential, i.e.

V(k,q) = v(k (q2 + 1
4k2) (A19)

the action on the wave function is [29]

⟨r|V| ⟩ = −12
(
(2v(r) + v(r)(2)  (r). (A20)

In [29] the �-function is introduced as �(r) = mred v(r), and the radial Schrödinger equation, orbital
angular momentum integer l, after making the Green-transformation ul = (1 + 2�)−1∕2wl,reads

w′′l +
[k2 − 2mredW(r) − l(l + 1)∕r2] wl(r) = 0. (A21)

The "effective" potentialW is energy dependent and given by

W(r) = V(r)
1 + 2� − 12mred ( �′

1 + 2�)
2
+ 2�
1 + 2�

p2i2mred
≈ V(r) − 2�(r) [V(r) − p2i2mred ] (A22)

Now, using a circular approximation the (classical) total energy is

E = p2i2mred = +12V < 0 (b.s.) (A23)

4. Perihelium-precession Planets: Here, we focus on the 1∕r2-terms, which are responsible for the
perihelium-precession. From the previous paragraph we have that

�(r) = 7mred4m2 V(0)(r) (A24)

There are now two possibilities:

a.We treat E in (A22) as a function of r as given in (A23), which gives
W(a)(r) = V(r) − �(r) V(r), (A25)

and consequently the 1∕r2-correction is given by
∆V ≈ −�(r) V(0)(r) = − 7

4m
[V(0)]2 (A26)

which is 7∕12× Einstein’s result.
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b.We treat E in (A22) as a constant, like in [20, 31]. Then, the E-term in (A22) is of 1∕r-type and only
deforms the shape of the orbit a little bit. The 1∕r2-correction becomes

∆V ≈ −2�(r) V(0)(r) = − 7
2m

[V(0)]2 , (A27)

which agrees with Schwinger [31], and leads to 7∕6× Einstein’s result!
Note: In a circular, classical, motion the kinetic and potential energy are connected by the equilibrium
equation:

|Fgrav.| = |Fcentr.|→ |V′| = |V|r = mv2r = p2
mr

or T = |V|∕2, instead of T = E −V!?

Appendix B: Scalar-interaction Imaginary-ghost Field

The Yukawa-interactionof a scalar fields (x), �(x)with the imaginary-ghost field �(x)we describe
by the interaction Hamiltonian

ℋI(x) = 1
2
[g  2(x) + g��2(x)] (�(x) + �†(x)) , (B1)

where the and�masses areMandm respectively. For the existence of theDyson S-matrix a Gaussian
adiabatic factor is necessary [6]

ℋ"I (x0) = ℋI e−"x20 , (B2)

such that for the transition matrix U"(x0, y0) the time limits x0 → +∞ and y0 → −∞ exist. Then, the
S-matrix is given by

S" =
∞∑
n=0

(−i)nn! ∫ d4x1…∫d4xn T [ℋ"I (x1)…ℋ"I (xn)] . (B3)

The 2nd order S-matrix element is

⟨p′, P′|S(2)" |p, P⟩ = −12 ∫ d4x∫ d4y ⟨p′, P′|T [ℋ"I (x)ℋ"I (y)] |p, P⟩. (B4)

The one-particle states of the scalar particles give the wave functions

 P(x) = ⟨0| (x)|P⟩ = [(2�)32!(P)]−1∕2 e−iP⋅x, (B5a)

�p(x) = ⟨0|�(x)|p⟩ = [(2�)32!(p)]−1∕2 e−ip⋅x. (B5b)

The plane wave expansion of the imaginary-ghost field is [6]

�(x) = ∫ d3p√(2�)32!p
[�(p)e−ip⋅x + �†(p)e+ip⋅x] ,

�†(x) = ∫ d3p√(2�)32!̃p
[�†(p)e−ip⋅x + �(p)e−ip⋅x] . (B6a)
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The quantization, such that [�(x), �†(y)] = 0 and the negative-metric, is given by the commutation
relations [�(p), �†(q)] = [�(p), �†(q)] = −(2�)3�(p − q), (B7a)[�(p), �†(q)] = [�(p), �†(q)] = 0. (B7b)

For imaginary-ghost exchange between the scalar particles the relevant term in theWick-expansion
of T […] is given by

T [ 2(x)�(x) �2(y)�(y)] ⇒ N [ 2(x) �2(y)] ⟨0|T [�(x) �(y)] |0⟩, (B8)

where

⟨0|T [�(x) �(y)] |0⟩ = i∆F(x − y; i�), (B9)

and

⟨p′, P′|N [ 2(x) �2(y)] |p, P⟩ = (2�)−6 [16!p′!P′!p!P]−1∕2 ⋅
× {ei(p′−p)⋅xei(P′−P)⋅y + ei(p′−p)⋅yei(P′−P)⋅x} . (B10)

The 2nd order S-matrix element becomes

⟨p′, P′|S(2)" |p, P⟩ = −g g� (2�)−3 [16!p′!P′!p!P]−1∕2∫ d4x∫ d4y ⋅
×ei(p′−p)⋅xei(P′−P)⋅y i∆F(x − y; i�) e−"x20e−"y20 . (B11)

Using now the variables

Z = 1
2(x + y), z = x − y, (B12)

and defining the M-matrix by

S"(f, i) = �f,i − (2�)4i �(Pf − Pi)M"(f, i), (B13)

we obtain

⟨p′, P′|M(2)" |p, P⟩ = g g� (2�)−3 [16!p′!P′!p!P]−1∕2 ⋅
×∫ d4z ei(p′−p)⋅z ∆F(z; i�) e−"z20∕2 (B14)

A similar contribution toM(2)" comes from the exchange of a �† imaginary-ghost particle. In that case
the Feynman propagator is

i∆F(z; −i�) = �(z0) ⟨0|]�†(z)�†(0)|0⟩ + �(−z0) ⟨0|]�†(0)�†(z)|0⟩. (B15)

Working out the z0-integrals in (B14) for ∆F(z; −i�) explicitly, we have
lim"→0∫

∞
−∞

dz0 e−"z20∕2�(z0) ⟨0|]�†(z)�†(0)|0⟩ ⇒
− lim"→0∫

∞
−∞

d� e−"�2∕2�(�) e−i!̃p� = i [P 1!̃p + i��(!̃p)] , (B16)
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p = +�p = −�

! = +i�!̃ = −i� !p = +
√
p2 − �2

!̃p = −
√
p2 − �2

R

|p = p-plane

FIG. 7: Branchpoints !(p) at p = ±�, and the relation between !(p) and !̃(p). The dashed-line indicates the
branchline. On the upper rim of the branchline ! = i√�2 − p2, and !̃ = −i√�2 − p2. For � < p < ∞ one has

! = √p2 − �2, whereas !̃ = −√p2 − �2. With these choices of the branches of the square-root !̃ = −!.

and

lim"→0∫
∞

−∞
dz0 e−"z20∕2�(−z0) ⟨0|]�†(0)�†(z)|0⟩ ⇒

− lim"→0∫
∞

−∞
d� e−"�2∕2�(−�) e+i!̃p� = i [P 1!̃p + i��(!̃p)] , (B17)

and we get

∫
∞

−∞
dz0 ∆F(z; −i�) = 2�∫ d3p

2!̃p(2�)3 eip⋅z [ 1�P 1!̃p + i�(!̃p)] . (B18)

Similarly for ∆F(z; +i�)
∫

∞
−∞

dz0 ∆F(z; i�) = 2�∫ d3p
2!p(2�)3 eip⋅z [ 1�P 1!p + i�(!p)] . (B19)

Here, for the branches of !p and !̃p see Fig. 7,

!p =
⎧
⎨⎩
+√p2 − �2 (p2 > �2),
+i
√
�2 − p

2 (p2 < �2) (B20a)

!̃p =
⎧
⎨⎩
−√�2 − p2 (p2 > �2),
−i
√
�2 − p

2 (p2 < �2) (B20b)
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For the further evaluation of (B19) and (B18) we consider

J ≡ 1
2�r∫

∞
0

pdp
!p sin(pr) [i�(!p) + 1�P 1!p ]

= 1
2�r [−i∫

�
0

pdp√�2 − p2 +∫
∞

�
pdp√p2 − �2 ] sin(pr) ⋅

× [i�(!p) + 1�P 1!p ] ≡ 1
2�r (K1 + K2) . (B21)

Using the identity 16

�(!p) = � (√�2 − p2) = 1p
√�2 − p2 [�(p − �) + �(p + �)] , (B22)

we obtain for K1 and K2
K"1 = +12 sin(�r) + 1�∫

�−"
0

pdp
p2 − �2 sin(pr),

K"2 = + i2 sin(�r) + 1�∫
∞

�+"
pdp

p2 − �2 sin(pr), (B23)

Here, a factor 1∕2 in included in the �-term because of the endpoint situation.
Next we evalute the similar integrals for the �†-propagation.

J̃ ≡ 1
2�r∫

∞
0

pdp
!̃p sin(pr) [i�(!̃p) + 1�P 1!̃p ]

= 1
2�r [+i∫

�
0

pdp√�2 − p2 −∫
∞

�
pdp√p2 − �2 ] sin(pr) ⋅

× [i�(!̃p) + 1�P 1!̃p ] ≡ 1
2�r

(K̃1 + K̃2) . (B24)

For K̃1 and K̃2 we obtain
K̃"1 = −12 sin(�r) + 1�∫

�−"
0

pdp
p2 − �2 sin(pr),

K̃"2 = − i2 sin(�r) + 1�∫
∞

�+"
pdp

p2 − �2 sin(pr), (B25)

16 According to Eq. (16.44) of [6] the Dirac �-function and Cauchy’s Principal value for complex argument, being useful in
extracting the finite parts of the Dyson S-matrix, can be defined by

�(!) = lim�→0 �"(!) , �"(!) = ∫
∞

−∞
d�
2�e−i!�e−

1
2 "�2 ,

P ( 1!) = lim�→0 P" ( 1! ) , P" ( 1!) = 1
2 ∫

∞

−∞
d� �(�) e−i!�e− 1

2 "�2 ,

From this definition it can be verified that �(ix) = �(x).
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From these results we find

1
2
(J + J̃) = + 1�P∫

∞
0

pdp
p2 − �2 sin(pr). (B26)

The time-integral over the propagator for the field �̃ = (� + �†)∕√2 becomes
∫

∞
−∞

dz0 12 [∆F(z; i�) + ∆F(z; −i�)] =
1

2�2rP∫
∞

0
qdq

q2 − �2 sin(qr) = P∫ d3q
(2�)3

exp(iq ⋅ r)
q2 − �2 . (B27)

and we obtain

⟨p′, P′|M(2)" |p, P⟩ = g g� (2�)−3 [16!p′!P′!p!P]−1∕2 ⋅
×∫d3r e−i(p′−p)⋅r ⋅ P∫ d3q

(2�)3
exp(iq ⋅ r)
q2 − �2

= g g� (2�)−3 [16!p′!P′!p!P]−1∕2 P 1

(p′ − p)2 − �2 , (B28)

which justifies the use of the principal-value integral in Eq. (9.10) etc.

Appendix C: Perihelium precession: -1/6-correction

The order G2 contributions to the perihelium precession evaluated in sections VIII, IX and X, differ
from the Einstein result by a factor 7/6. Here, we evaluate in detail an additional effect of order G2 in
the interaction between m and M. This is associated with the gravitational energy between the planet
(mas m) and the Sun (massM), which is not localized on either mass [31]. It is distributed in space and
can be calculated from the Newtonian field strength:

g(x; r) = G ( [M|x| + m|x− r| ] . (C1)

The energy density in a Newtonian gravitational field can be derived as follows: Consider the assem-

Newtonian Gravity Electrostatics
Force between FN = −GmM

r2 r̂ FC = + qQ
r2 r̂two sources

Force derived FN = −m(ΦN(xM) FC = −q(ΦC(xM)from potential
Potential outside ΦN = −GM

r , g = −(ΦN(xM ΦC = Q
r , E = −(ΦC(xMspherical source

Field equation (2ΦN = 4�G�(xM) (2ΦC = −�elec(xM)for potential

TABLE IV: Newtonian Gravity and Electrostatics. The positions and charges of the masses M and m are xM and
xm, respectively Q and q. The relative distance is r = xm − xM .

bling of a system of N particles of massMA at the positions xA. The Newtonian potential energy W of
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the system is the needed energy by bringing them one by one from infinity in the gravitational field of
all particles already assembled, which is

W(r) = −
1

2

∑
A≠B

GMAMB|xA − xB| . (C2)

For a continuous distribution of mass with density �(x) this is
W(r) = −

1

2
∫d3x∫d3x′ G�(x)�(x′)|x − x′| =

1

2
∫d3x �(x) ΦN(x). (C3)

Via the Newtonian field equation (2ΦN(x) = 4�G �(x) one can eliminate the source �(x) in the last
expression of Eq. (C3) and applying the divergence theorem leads to

W(r) = −
1

8�G ∫d3x (ΦN(x) ⋅ (ΦN(x) = −
1

8�G ∫d3x [g(x)]2 ≡ ∫d3x �grav(x). (C4)

Here �grav(x) is the energy density associated with the Newtonian gravitational field.
The gravitational energy density in the gravitational field of the masses M and m is

�grav(x; r) = −
1

8�G ( (M|x| + m|x− r|) ⋅ ( (M|x| + m|x− r|) . (C5)

Here, the gravitational self-energy terms, proportional to M2 and m2, are in principle incorporated
into M and m and independent of to each others presence. (Moreover, these self-energy terms are
independent of the positions and hence can not contribute to the perihelium precession.) The cross
term, which contains the correlation of the two bodies, is r-dependent and given by

�cross(x; r) = −
1

4�G ( (M|x|) ⋅ ( ( m|x− r|) . (C6)

Because of the mass-energy equivalence, the energy density �cross(x; r) implies also a mass distribution�cross = �cross∕c2, and hence gives a gravitational pull to the planet and sun. The interaction energy of
this energy density with M is of order G2 and given by (units c=1)

Vcross,M(r) ≡ −∫d3x MG|x| �cross(x; r) = 1

4�G2M2m ∫d3x ( 1|x|( 1|x|) ⋅ ( 1|x− r|
=

1

8�G2M2m ∫d3x ( 1|x|2 ⋅ ( 1|x− r| = −
1

8�G2M2m ⋅
×∫d3x 1|x|2 ⋅ (2 1|x− r| = +

1

2
G2M2m 1|r|2 = +

V2
2m. (C7)

Here, we used |x|−1(|x|−1 = (|x|−2∕2, applied partial integration, (2(1∕r) = −4��(r), and the New-
tonian potential V ≡ −GMm∕r. In total one has for the perihelium precession −7V2∕2m + V2∕2m =
−6V2∕2m, which is Einstein’s result.
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Note: In this note we give a detailed derivation which is symmetric between the planet
and the sun. Similar to the mass M, the interaction energy of the energy density �cross
with the planet, mass m, is given by

Vcross,m(r) ≡ −∫d3x mG|x| �cross(x; r) = 1

4�G2Mm2 ⋅ ∫d3x ( 1|x− r|( 1|x|) ⋅
⋅( 1|x− r| = +

1

2
G2Mm2 1|r|2 = +

V2
2M ≪ Vcross,M(r) for m ≪ M. (C8)

The total potential energy due to �cross(x, r) is
Vcross(r) = Vcross,M(r) + Vcross,m(r)

= 1
2G2Mm (M +m) 1|xA − xB|2 = M +m

2Mm V2, (C9)

where xA and xB are the position of the sun and the planet respectively, r = xB − xA,
and V = −GMm∕r. The potential energies Vcross,M and Vcross,m are both sensitive to the
position of the sun and the planet, and therefore leads to a force between the planet and the
sun. Notice the symmetry w.r.t. M ↔ m which ensures the < action = -reaction > rule.
In the center-of-mass the separation of the relative motion, takingMA = M,MB = m, is
as follows:

Md2xAdt2 = +(AVcross = +12
M +mMm (rV2, (C10a)

md2xBdt2 = +(BVcross = −12
M +mMm (rV2, (C10b)

This gives for the center of mass d2Rc.m.∕dt2 = 0, and for the relative motion
d2
dt2 (xB − xA) = −12 ( 1M + 1m) M +mMm (V2 = −12 (M +mMm )2(V2 ⇒ (C11a)

�red d2rdt2 = −( ( V2
2�red ) ≈ −( V2

2m. (C11b)

Here, �red = Mm∕(M +m) ≈ m form ≪ M.

Application of (C11) to the planet-sun system demonstrates that the potential in Eq. (C7)
indeed represents to a very good approximation the proper extra potential from the �cross
energy distribution.

Appendix D: Cosmological constant and Graviton mass

The gravitational action including the cosmological term reads [37]

Sg = − c3
16�G ∫ d4x √−g R − 1c ∫ d4x √−g Λ. (D1)
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The Einstein equation follows from

�Sg�g�� = − c3
16�G (R�� − 1

2g��R)√−g + Λ
2c g��

√−g = 0, (D2)

or, with the inclusion of the matter term �SM∕�g��,
(R�� − 12g��R) + � g�� = −�T��∕c2, (D3)

with Einstein’s constant � = 8�G∕c2 and � = 8�GΛ∕c4 = �Λ∕c2. Here is used, see [38], �√−g∕�g�� =−g��√−g∕2. Eqn. (D3) is Einstein’s equation Ref. [39], see also Ref. [40] equation (8.1.39).
Incorporation of the cosmological term in the spin-2 formalism of this paper, in the weak-field approx-
imation, is achieved by the change ℒ(2) → ℒ(2) + c0 √−g in the spin-2 Lagrangian, with c0 = Λ∕c. In
the weak field approximation this becomes , see Appendix E,

ℒ(2) → ℒ(2) + c0 [1 + 12�ℎ�� − �2 (14ℎ��ℎ�� − 18(ℎ��)2)] (D4)

With the constraint ℎ�� = 0, coming from )ℒ��∕)�(x) = 0, only the c0 ℎ��ℎ��∕4-term is relevant. This

implies that in the Klein-Gordon equation (2.11) for the ℎ��-field M22 → M22 + c0�2. Assuming that
the origin of the gravitational mass is entirely due to the cosmological constant we have �G = M2 =√Λ∕c �.
The Friedmann equation reads [41], see also [40] eqn. (9.73) with Λ = �,

H2 ≡ ( ṘR)
2
= 8�G3 � − kc2R2 + 13�c2. (D5)

Note that for R ≫ 1 the density becomes
� = 3H2

8�G − �c28�G = �c − 116�G (�Gc2ℏ )2 . (D6)

The sign of the �-term is in agreement with [41] Eqn. (9.1), but is opposite to that in Ref. [35]
Eqn. (10.27) which has Λ ⇒ −�2Gc2∕ℏ2, and implies the presence of "dark matter". Λ < 0 leads to
an Anti-deSitter space for an empty universe, which seems unphysical. At the present epoch the Hub-
ble constant is

H20 = 8�G3 �0 − kc2
R20 + 13�c2. (D7)

The deceleration parameter q0 = −R̈∕RH2 satisfies [42]

q0 ≡ −R̈∕RH2 = 12Ω0 − c2Λ∕3H20 . (D8)

From observations the deceleration parameter |q0| < 5 [43], which gives
|Λ| ≤ 21H20∕c2 ≈ 10−54 cm−2, (D9)

for H0 ≤ 100 km s−1 Mpc−1. WithMPl = 10−33 cm−1, one has |Λ|∕M2Pl < 10−120.
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In theGUT picture, before the breakdown of theGUT gauge-symmetry via a first-order phase transition
at the critical temperature Tc ≈ 1014 GeV, the (GUT) cosmological constant is much larger than the
present one and is given by

Λ ≡ 8�G3 T4c ≈ (1015GeV)4M−2Pl . (D10)

Interpretation of the cosmological constant term as a mass term in the equation of the ℎ��-field we
have [35]

�G = √2Λ =
√16�G3 T2c =

√16�3 ( TcMPl )
2 MPl = 4.1 10−10MPl, (D11)

The perihelium precession of Mercury imposes a limit on the present cosmological constant, which
follows from the modification of the Schwarzschild metric, namely

ds2 = c2 (1 − 2M∕r − 13Λr2) dt2 − (1 − 2M∕r − 13Λr2)−1 dr2 − r2 (d�2 + sin2 � d�2) , (D12)

where M = M⊙G∕c2. From the accuracy of the value of the perihelium precession of Mercury one
derives that, see [42]

|Λ| < 10−42cm−2 = 10−108 M2Pl → �G = √2Λ = 1.4 10−54MPl ≈ 2.8 10−32 me, (D13)

where is usedM−1Pl = 10−33 cm, in units ℏ = c = 1.
The transition between the large cosmological constantΛ in (D10) and the tiny one in (D13) can be under-
stood within the inflational phase transition scenario [44]. For this the "latent heat" ΛM2pl is during this
phase transition transformed into radiation, diminishing enormously the cosmological constant.

Appendix E: Miscellaneous formulas

For a diagonalizable matrix A

det(I + "A) = 1 + " f1(A) + "2 f2(A) + … (E1)

The first order term is f1(A) = Tr(A). To calulate the second order, we use
I + "A = exp("B), det("B) = exp["Tr(B)] (E2)

This leads to

det(I + "A) = det[exp("B)] = det (I + "B + "2
2
B2 +… )

= 1 + " Tr(B) + "2
2
(Tr B)2 + … . (E3)

Also we can rewrite

det(I + "A) = det[exp("B)] = det [I + "(B + "
2
B2 + … )]

= 1 + " Tr (B + "
2
B2 + …

)
+ "2f2(B + …

)
+ O("3). (E4)
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Taking lim " → 0 leads to

f2(B) =
1

2

[
(Tr B)2 − Tr (B2)]. (E5)

Since in this limit A=B we have f2(A) = f2(B).
For g�� = ��� + � ℎ�� or in term of matrices g = � + � ℎ we introduce

I = D � D , A = D ℎ D , " = �, (E6)

where the diagonal matrix D has D00 = 1, Dmm = i (m = 1, 2, 3). Then,
det(I + " A) = det

(D (� + � ℎ)D) = −det
(� + � ℎ), (E7)

since det D = −i. Using the result above we obtain
det

(� + � ℎ) = −det(I + " A) = −
(
1 + " f1(A) + "2f2(A) + …

)
(E8)

This gives √
−det(g) = [

−det
(� + � ℎ)]

=
(
1 + " f1(A) + "2f2(A) + …

)1∕2
= 1 +

1

2
" f1(A) + 1

2
"2f2(A) − 1

8
"2f21(A) + O("3) (E9)

Now, Tr A = Tr(DℎD) = Tr(D2ℎ) = Tr(�ℎ) which gives√
−det(g) = 1 +

1

2
" Tr(�ℎ) + 1

2
�2 [1

2
(Tr(�ℎ))2 − 1

2
Tr((�ℎ)2) − 1

4
(Tr(�ℎ))2] + … (E10)

Up to the second order in the gravitation constant � we obtained√
−det(g) = 1 +

1

2
� ℎ�� − �2 [1

4
ℎ��ℎ�� − 1

8
ℎ��ℎ��] . (E11)
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