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Abstract
The quark-nucleon (QN) potential due to di-quark exchange is derived for a medium of mixed nuclear-quark

matter. The diquark-exchange is of the axial-vector type. The potential is repulsive for S-waves, P-waves, and
other partial waves. Parameterizing the strength of this interaction as a function of the quark density such as to
increase with the deconfining rate it can become rather significant in neutron stars. With sufficient strength the
QN-potential creates a "domain-wall" between nuclearmatter (nucleons and nuclei) and the quark/nucleon-core
in a neutron star. The latter occurs in the deconfinement region.

Typeset by REVTEX 1



I. INTRODUCTION

At present the mixed nuclear-quark matter is a much attended topic, see [1]. In this note we derive
the quark-nucleon (QN) potential due to di-quark D) exchange.

In considering meson coupling to quarks as well as to nucleons leads in a natural way to coupled
channel treatment in a mixture of nuclear and quarkmatter. The tri-quark presentation of the nucleon
[2], i.e. N ∼ �N = (q̃C
�q)
5
�q suggests the reactions N ↔ 3Q, which takes place in high density
matter. For chemical reactions A ↔ B there is no confinement barrier in contrast to N ↔ 3Q, which
complicates the thermodynamic treatment. Therefore, in connecting low and high density systems tak-
ing into account of confinement-deconfinement (in a phenomenological way) is essential for a realistic
description.

It turns out that for the treatment of the Lagrangian with the tri-quark field �N(x) in e.g. the func-
tional form of the partition function for matter is difficult to handle. This problem is circumvented
by avoiding third powers in the quark fields by the introduction of an auxiliary colored di-quark field
�a�(x) [12], which upon quantization leads to di-quarks D. Apart from this technical reason it may be
that di-quark configurations play a real physical rôle.

In [3] nucleon and quark imixed matter is discussed in the context of the MF-approach in matter in
the framework of the grand-partition functional. Here, we restrict ourselves to the nucleons and the
quarks, working out the QN-potential in this paper. The resulting repulsionmay be seen as not ad hoc,
but as a natural consequence of the deconfimenent mechanism. Exchange of these di-quarks leads in
all (S-, P-, etc) waves to a repulsive interaction between the quark and a nucleon.

We study the confinement-deconfinement in mixed nuclear and quark matter based on the tran-
sition N ↔ Q + D in a phenomenological way. The model we use is a contracting sphere of mixed
neutron and quark matter. As an application of the diquark-exchange QN-potential we considered the
interaction of an infalling nucleon scattering with a quark-sphere. It is found that the nucleons are
reflected from the surface of the sphere. The same will happen to infalling nuclei. This means that,
with a sufficiently strength, controlled by the parameters �3, Λ, a "domain-wall’ is created by the QN-
potential. The samewill happenwith sphere containing amixture of quark and nucleons which occurs
in the deconfining region.

The contents of this paper is as follows. In section II the reprentation of the triquark states for
nucelons is given as well as the Lagrangian for the description of the mixed matter of quarks and nu-
cleons with the nucleon tri-quark transition. Furthermore the di-quark are introduced. In section III
the nucleon-quark potentials are derived from a contact interaction based on di-quark (D) exchange
between nucleons and quarks. In section IV an analysis of the QN-potential parameters and figures
are given in order to estimate the possible significance of the results. An illustration is given of nu-
cleon and quark densities in a homologous collapse. Section V contains a summary and conclusions.
In Appendix A, conform Ref. [3], the Lagrangian for mixed nuclear-quark matter is described in the
MF-approximation. The grand-partition function is given, again in the MF-approximation, and the in-
teraction betwee quarks and nucleons via the di-quark field is derived. In Appendix B the Feynman
propagator is derived following the standard field-theoretican method for the auxiliary di-quark field.
It is found to be zero. In Appendix C the special features of exchange-potentials aer given.

II. MIXEDMATTER: QUARKS AND NUCLEONS

Inmixed quark-nucleonmatter there are, depending on the densities, transitions between nucleons
and tri-quarks. For the tri-quark system we choose the operator, see [2]

�N(x) =
(
q̃a(x)C
�qb(x)

)

5
�q

c(x)fabc (2.1)
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where C is the charge conjugation operator in Dirac space, which has in the PD-representation the
properties C−1
�C = −
�T , C = −C−1 = −C† = −CT. For the proton and neutron this is

�p(x) =
(
ũa(x)C
�ub(x)

)

5
�d

c(x)"abc, (2.2a)

�n(x) =
(
d̃a(x)C
�db(x)

)

5
�u

c(x)"abc, (2.2b)

where a,b,c denote the SUc(3) color indices of the quark fields.
In a mean-field (MF) theory with a scalar and vector fields �, ! the Lagrangian density consists of four
parts

ℒ = ℒQ + ℒN +ℒM +ℒint, (2.3a)

ℒQ = q̄(x)[i
� ()� + i

3
g!!

�) − (
mQ −

1

3
g�� +

1

3
gP�P

)] q(x) (2.3b)

ℒN =  ̄(x)[i
� ()� + ig!!
�) −

(
mN − g�� + gP�P

)]  (x) (2.3c)

ℒM = +
1

2

(
)��)�� − m2

��
2
)
−
1

4
!��!

�� +
1

2
m2
!!�!

� −U(�) +
1

2
ℳ2�2P, (2.3d)

ℒint = −�3
{
 ̄(x) �N + �̄N  (x)

}
.. (2.3e)

with a scalar self-interaction, see e.g. [10]. With this interaction N ↔ 3Q the baryon number den-
sity �B = B = �N + �Q∕3 is conserved. The nucleon-triquark coupling �3 has the dimension [�3] =
[MeV]−2, and via the baryon density �B dependence contains the confinement-deconfinement transi-
tion information. A direct way to treat this sytem inMFT would be to introduce the auxiliary tri-quark
field �N via the Lagrangian density

ℒ� ∼ �̄� −
[
�̄
(
qa(x)C
�qb(x)

)

5
�q

c(x)"abc + ℎ.c.
]

which via the E.L:. equations gives for the composite field � =
(
q̃a(x)C
�qb(x)

)

5
�q

c(x)"abc.
However, the occurrence of a triple-quark field makes a handling of the partition fuctions ZG very
complicated. In the tri-quark nucleon presentation (2.1) the contraction of the indices, indiacted by (
...), suggest to introduce instead the diquark field.

A. Mixed matter: Mean-field with Di-quarks

For the interaction Lagrangian in (2.3) with the tri-quark field �N(x) the functional form of the
partition function is difficult to handle. In order to avoid third powers in the quark fields we write
�N(x) in terms of the (bosonic) di-quark field �

a
�(x) as

�N(x) = (ℏc)2
5

�qa(x) ⋅ �a�(x), �

a
�(x) ≡ "abcq̃b(x)C
�q

c(x)∕(ℏc)2. (2.4)

Introduction this auxiliary di-quark field �a� via the Lagrangian density [12]

ℒ� = �̄3{�a†� (x)��a(x) − [
�a†� (x)

(
q̃b(x)C
�qc(x)

)
fabc + ℎ.c.

]} (2.5)

gives via the E.L. equation �a�(x) ∼
(
q̃b(x)C
�q

c(x)
)
fabc.

The total Lagrangian is the Lagrangian in (2.3 with the addition ofℒ� and forN ↔ 3Q interactionℒint

the substitutionN ↔ 3Q transitions in the form

ℒint → −�̄3
{
( ̄(x)
5


�qa) �a� + ℎ.c.
}
, (2.6)

where �̄3 = (ℏc)2�3. From now on we use the notation �3 ≡ �̄3.
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FIG. 1: Diquark-exchange (a) NQ → QN and (b) NQ → NQ transitions.

B. Di-quark Isospin

As the proton and neutron presentation (2.2) show the diquark field has isospin one. So, �a�(x) is
an isovector vector-field. Therefore, we introduce the fields

Da
�(x) ≡ �a�(x) = "abcQ̃b(x)C
��Qc(x)∕(ℏc)2, (2.7)

where Q = (u, d) is the isospin-spinor SU(2) doublet. The di-quark NQ-vertex is given by the interac-
tion Lagrangian (2.6)

ℒ(1)
int
= −�3

{
( ̄(x)
5


��qa) ⋅Da
�(x) + ℎ.c.

}
, (2.8)

III. DI-QUARK EXCHANGE NUCLEON-QUARK INTERACTION

Since ℒ� does not have a "kinetic energy" term the �a�(x) does not propagate, leading to "contact
term" interactions only. Note: in Appendix B it is shown explicitly that indeed the Feynman propagator
is zero, i.e. no propagation, which not unusual for an auxiliary field, see Ref. [12]. In second-order the
(effective) interaction Lagrangian for the di-quark exchange is

ℒ(2)
QN,QN

= −�23
(
 ̄
5
��Q) ⋅ (Q̄
5
�� )∕ℳ2, (3.1)

which represents the lowest order contactNQ → QN interaction, whereℳ = ℏc.
In Fig. 1 panel (a) represents the exchange potential Ve and panel (b) according to ℒ(2) represents

the direct potential Vd.

From first-order the interaction, V ∼ −Lint, Eqn. (3.1) gives for panel (a)

V(p′1, s
′
1, p

′
2, s

′
2;p1, s1, p2, s2) = −2�23

[
ūQ(p

′
1, s

′
1)
5


��uN(p1, s1)] ⋅ [ūN(p′2, s′2)
5
��uQ(p2, s2)] .(3.2)
where a color factor 2 is included. Using Pauli-spinor matrix elements

ū(p′
5
0u(p) = −

√ ℰ′ℰ
4M′M

[� ⋅ p′ℰ′ +
� ⋅ pℰ ] , (3.3)

ū(p′)
5
u(p) = −

√ ℰ′ℰ
4M′M

[� + (� ⋅ p′) � (� ⋅ p)ℰ′ℰ ] ≈ −�, (3.4)

where M’,M are the quark or the nucleon mass, and ℰ = Ep +M. Note that the leading term from the

vertex factors [....][....] in (3.2) is −(�1 ⋅ �2). In momentum space we write ṼQN ≡ Ṽ
(a)
QN

+ Ṽ
(b)
QN

and
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obtain

Ṽ
(a)
QN

= −2�23[(1 − 2k2
3MQMN

+
3(q2 + k2∕4)
2MQMN

) �1 ⋅ �2 + 1

4MQMN
((�1 ⋅ k)(�2 ⋅ k) − 1

3
k2�1 ⋅ �2)

+
i

4MQMN
(�1 + �2) ⋅ q × k] ⋅ g̃(k2), (3.5a)

Ṽ
(b)
QN

= +2�2
3
[ (MN −MQ)

2

4M2
NM

2
Q

{(q2 + k2∕4) − k2∕2} �1 ⋅ �2
−
i

4

⎛⎜⎝
M2
N −M2

Q

8M2
NM

2
Q

⎞⎟⎠ (1 + �1 ⋅ �2) (�1 − �2) ⋅ n] ⋅ g̃(k2), (3.5b)

where g̃(k2) = exp (−k2∕Λ2) ∕ℳ2. Here, we added the gaussian cut-off and a scale parameterℳ.

Note: V
(a)
QN

is similar to axial-vector exchange in NN and YN. V
(b)
QN

is the "extra term" proportional to the
MN −MQ mass difference, which is not small in the QN-potential.
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In configuration space, taking into account the exchange character of the potential we
have a factor PfP�. Since the physical strates satisfy PfP�Px = −1, this leads to a factor
−Px and a sign-change in the antisymmetric spin-orbit. We obtain for the central, spin-
spin, tensor, and spin-orbit QD-potentials, see e.g. Ref. [14],

V(a)
QN
(r) = −2�2

3

Λ
8� [(�0C(r) − Λ2

6MNMQ
�1
C
(r)) (�1 ⋅ �2) − 3

4MQMN

((2�0
C
(r) + �0

C
(r)(2) (�1 ⋅ �2)

− Λ2
16MNMQ

�0T(r) S12 +
Λ2

8MNMQ
�0
SO
(r) L ⋅ S] (�1 ⋅ �2) Px, (3.6a)

V
(b)
QN
(r) = −2�2

3

Λ
8� [ (MN −MQ)2

4MNMQ
{+ Λ2
8MNMQ

�1
C
(r) + 1

2MNMQ

(
(2�0

C
(r) + �0

C
(r)(2

)} ⋅
×(�1 ⋅ �2) − Λ2

4MNMQ

(M2
N −M2

Q
)

4MNMQ
�0
SO
(r) ⋅ 12(�1 − �2) ⋅ L] (�1 ⋅ �2) Px , (3.6b)

where

�0
C
(r) = 1√

�

Λ2ℳ2
exp [−14Λ2r2] , (3.7a)

�1
C
(r) = 2√

�

Λ2ℳ2

(
3 − Λ2r2∕2

)
exp [−14Λ2r2] , (3.7b)

�0T(r) =
1

6
√
�

Λ2ℳ2
(Λr)2 exp [−14Λ2r2] , (3.7c)

�0
SO
(r) = 2√

�

Λ2ℳ2
exp [−14Λ2r2] . (3.7d)

We introduced a gaussian cut-offwith the parameterΛ. This parameter is a free parameter
and can be used to tune the di-quark exchange potential which is also the case with �3.
The non-local potential is

V(n.l.)(r) = − [(2 �(r)2Mred
+ �(r)
2Mred

(2]Px , with �(r) = −
�23
4�

3Λ
4MQMN�

0
C(r) (�1 ⋅ �2) (�1 ⋅ �2).(3.8)

For the statistical average S-wave potential we obtain from Eq. (3.6)

V̄(CQM) = 1
4V(

1S0) +
3
4V(

3S1) = +
3�23
4� Λ (�0C(r) − Λ2

6MNMQ
{1 − 3(MN −MQ)2

16MNMQ
}�1C(r)) (3.9)

which result comes from (�1 ⋅ �2)(�1 ⋅ �2) = −3 for both 1S0 and 3S1.

The confinement-deconfinement transition can be parametrized as �3 → 
D�3 with e.g.


D(�N , �D) =
[
exp

{
+
3 (�N∕�D − 1)

}
− 1

]
�(�N − �D), (3.10)

where �D is the deconfinement threshold. In [1] a similar form is used for the density dependence of
the constituent quark mass.
Notes: 1. The S-wave quark-nucleon repulsion (3.9) is repulsive and becomes strong for high den-
sities. 2. The 1P1-wave has �1 ⋅ �2�1 ⋅ �2Px = −9 giving strong repulsion. For 3PJ(J = 0, 1, 2)

6



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  0.5  1  1.5  2  2.5

V
Q

N
(M

E
V

)

 r [fm]

 VQN(1S0,1P1)

 V(1S0) 
 V(1P1) 

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.5  1  1.5  2  2.5

V
Q

N
(M

E
V

)

 r [fm]

 VQN(3P0,1,2)

 V(3P0) 
 V(3P1) 
 V(3P2) 

FIG. 2: Quark-nucleon di-quark-exchange S- and P-wave potentials. Parameters: �3∕√4� = 1.0,ℳ = ℏc,Λ =
400MeV.

the spin-isospin and the exchange operator give a factor -1, giving again a (weaker) repulsion. 3. The
di-quark exchange potential gives a repulsive wall for the nucleons between the nucleon- and quark-phase.

In Fig. 2 the S- and P-wave di=quark exchange quark-nucleon potentials are shown. The parameters
are: �3 = 5.4, m� = 2mQ. (Note that V(3S1) = V(1S0), so there is in fact only one S-wave potential.)
In Fig. 3 the contributions from the V0

� ∼ �0�(r), V1
� ∼ �1�(r) and V2

� ∼ �1�(r) terms are shown. We note
that the volume integral of V1,2

� = 0, so that its effect is diminished.

IV. ANALYSIS AND RESULTS

Analysis S-wave potential VQN ≡ V
(a)
QN
:

1. The S-wave potential is explicitly

VQN(L = 0)(r) = 3�23
Λ

4�
√
�

Λ2ℳ2 [1 − 3Λ2
4MNMQ

(1 − 1
6Λ

2r2)] exp [−14Λ2r2] . (4.1)

2. At r=0

VQN(r = 0) =
3�23
4�
√
�

Λ3ℳ2 (4.2)
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FIG. 3: Quark-nucleon di-quark-exchange V(1S0) and V(1P1) contributions. Parameters: �3∕√4� = 1.0,ℳ =ℏc,Λ = 400MeV.

3. Zero of the potential

VQN ∶ r0 =
√
6
√
1 −

4MQMN

3Λ2 Λ−1. (4.3)

For Λ ≤ 2MN∕3 ≈ 627MeV there is no zero, giving gauss-like potentials.

4. Strength comparison: The volume integrals Vint for S-waves of the D-quark exchange and !
vector-exchange are

Vint(D) = −
2�23ℳ2 ⟨�1 ⋅ �2⟩ = 6�23ℳ2 , Vint(!) =

g2!
m2
!

. (4.4)

For equal strength we have �3∕g! = (ℳ∕m!)∕
√
6 ≈ 0.10 forℳ = ℏc = 197.32MeV, m! = 783

MeV and g!∕
√
4� = 3.1149 in ESC16-model.

5. Supernova Collapse: The deconfining interaction Lagrangiansℒint in (2.3e) and (2.6) not only
are importasnt for neutron stars, but may also play a role in supernova phenomena. In Fig. 5 an
illustration of the neutron and quark densities is shown for a homologous (exponential) super-
nova collapse. As a function of time nB(t) = nB(t0) exp [3H(t − t0)], where t0 is the contraction
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FIG. 4: Quark-nucleon di-quark-exchange V(1S0) and V(1P1) contributions. Parameters: �3∕√4� = 1.0,ℳ =
400,Λ = 400MeV, or equivalent �3∕√4� = 2.35,ℳ = Mp,Λ = 400MeV.

starting time. The dependence of the deconfinement coupling �3 on the density is like in (3.10).
Let tD the time deconfinement sets in. Then, for t ≤ tD one has nN(t) = nB(t), nQ(t) = 0. For
t ≥ tD the densities satisfy dnN∕dt = 3HnN − ΓnN, dnQ∕dt = 3HnQ + 3ΓnN , where Γ is the
deconfinement transition width. Solving these equations [17] leads to

�B ≥ �D ∶ �N = �B (�B�D )
−Γ∕3H

, �Q = 3�B [1 − (�B
�D
)−Γ∕3H] .

In Fig. 5 the decay width Γ(N → 3Q) = 14 MeV corresponds to the mass difference ∆m =
MN − 3MQ = 4.63MeV, and �3∕

√
4� = 1.0 is treated as density independent.

The time-evolution is shown in Table I, which is according to the Wilson’s scenario [18, 19].
Here R=R(t) denotes the radius of the collapsing inner part of the star. At t0 = 273ms the radius
R= 17.7 km, the mass of the (homologous) collapsing coreMℎ.c. ≈ MCℎ ≈ 0.79M⨀, and nuclear
density �c = 1.29 × 1014 g/cm3.

Since the velocities in the inner part are smaller than the velocity of the sound vs there is almost
instant pressure communication, which results in uniform densities inside the inner part for
each time. The inner region is totally dominated by quark-matter indicating a separation of the
quarkyonic- and the nucleonic-phase, which is likely also to occur in neutron stars.
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FIG. 5: Homologous collapse supernova a la Wilson [18, 19], H = 2.579s−1,Γ = 14MeV, �0 = 0.153fm−3, �D =
3�0.

V. SUMMARY AND CONCLUSION

Summarizing: 1. The S-wave quark-nucleon potential (3.9) is repulsive and becomes strong for high
densities. 2. The 1P1-wave has �1 ⋅ �2�1 ⋅ �2Px = −9 giving strong repulsion. For 3PJ(J = 0, 1, 2)
the spin-isospin and the exchange operator give a factor -1, giving again a (weaker) repulsion. 3. The
di-quark exchange potential gives a repulsive wall for the nucleons between the nucleon- and quark-phase.

The introduction of the di-quark field is natural in view of the p and n presentation in [2]. Technically
it has the advantage that this facilitates the study of nuclear/quark matter using the grand-partition
function ZG in the MFT.

Potentially, the QN-potential can be important for e.g. G-matrix calculations of neutron matter, see e.g
[1]. The coupling �3 can be investigated in such calculations. The density dependent treatment of the
N ↔ 3Q coupling is important for a realistic description of the confinement-deconfinement process.
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t(s) R(km) �B∕�0 �N∕�0 �Q∕�0
0.273 17.700 0.306e-02 0.306e-02 0.000e+00

0.313 15.965 0.417e-02 0.417e-02 0.000e+00

0.363 14.033 0.614e-02 0.614e-02 0.000e+00

0.413 12.336 0.904e-02 0.904e-02 0.000e+00

0.463 10.843 0.133e-02 0.133e-02 0.000e+00

0.513 9.531 0.196e-01 0.196e-01 0.000e+00

0.563 8,378 0.289e-01 0.289e-01 0.000e+00

0.613 7.364 0.425e-01 0.425e-01 0.000e+00

0.663 6.473 0.626e-01 0.626e-01 0.000e+00

0.713 5.690 0.921e-01 0.921e-01 0.000e+00

0.763 5.002 0.136e-01 0.136e-01 0.000e+00

0.813 4.397 0.200e+00 0.200e+00 0.000e+00

0.863 3.865 0.294e+00 0.294e+00 0.000e+00

0.923 3.311 0.468e+00 0.452e+00 0.466e-01

0.943 3.144 0.546e+00 0.399e+00 0.441e+00

0.963 2.986 0.637e+00 0.352e+00 0.856e+00

1.013 2.625 0.938e+00 0.257e+00 0.204e+01

1.063 2.307 0.138e+01 0.188e+00 0.358e+01

1.113 2.028 0.203e+01 0.138e+00 0.569e+01

1.163 1.783 0.300e+01 0.101e+00 0.868e+01

1.183 1.639 0.350e+01 0.887e-01 0.102e+02

1.213 1.567 0.441e+01 0.735e-01 0.130e+02

1.233 1.488 0.515e+01 0.649e-01 0.152e+02

1.263 1.377 0.649e+01 0.538e-01 0.193e+02

TABLE I: Homologous Exponential Collapse
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Appendix A: Mixed matter: Mean-field with Di-quarks

For the interaction Lagrangian in (2.3) with the tri-quark field �N(x) the functional form of the
partition function is difficult to handle. In order to avoid third powers in the quark fields we write
�N(x) in terms of the (bosonic) di-quark field �a�(x) as

�N(x) = (ℏc)2
5
�qa(x) ⋅ �a�(x), �a�(x) ≡ "abcq̃b(x)C
�qc(x)∕(ℏc)2. (A1)

Introduction this auxiliary di-quark field �a� via the Lagrangian density

ℒ� = �̄23{P�a†� (x)��a(x) − [
�a†� (x)

(
q̃b(x)C
�qc(x)

)
fabc + ℎ.c.

]} (A2)

gives via the E.L. equation �a�(x) =
(
q̃b(x)C
�qc(x)

)
fabc. Sign in ℒ� is chosen such that ZG is defined!

The total Lagrangian is the Lagrangian in (2.3 with the addition ofℒ� and forN ↔ 3Q interactionℒint

the substitutionN ↔ 3Q transitions in the form

ℒint → −�3
{
( ̄(x)
5
�qa) �a� + ℎ.c.

}
, (A3)

The total Lagrangian is the Lagrangian in (2.3 with the addition of ℒ� and the new interaction
Lagrangian

In the MF-approximation the momentum space equations for the nucleon and quark fields become

[

�(k� − g!!

�) − (mN − g�� + gP�P)
]
 (k) = �3⟨�a0 ⟩
0
5qa(k)→ 0, (A4a)

[
�(k� − 1
3g!!

�) − (mQ −
1
3g�� +

1
3gP�P)] qa(k) = �3⟨�a0 ⟩ 
0
5 (k)→ 0. (A4b)

The partition function becomes

ZG = ∫[d ̄][d ][dq̄][dq][d�][d!�]∫D�a�D�a†� exp[∫�

0
d�∫ d3x ⋅

×
(ℒN + ℒQ + ℒM +ℒint + ℒ� + �N 

† + �Qq
†q + �D�

a†
� �

a�
)],

where we introduced the chemical potential for the di-quarks D. Since in the ground state ⟨�a�⟩ = 0
we put �D = 0 in the following. For simplicity in this section we leave out the scalar self-interactions
U(�), the pomeron and instanton fields �P, �I , i.e.

ℒQ → q̄(x)[i
� ()� + i

3g!!
�) − (

mQ −
1
3g��

)] q(x) (A5a)

ℒN →  ̄(x)[i
� ()� + ig!!
�) −

(
mN − g��

)]  (x) (A5b)

ℒM → +12
(
)��)�� −m2

��
2) − 1

4!��!
�� + 1

2m
2
!!�!

� (A5c)

Making theMF-approximation for the scalar and vector fields the grand partition function becomes

ZG = ∫D�D!�∫D D ̄DqDq̄a∫D�a�D�a†� exp[i∫�

0
d�∫ d3x ℒ] (A6a)

⇒ exp [�V(−12m2
��̄2 +

1
2m

2
!!̄20

)] ∫D D ̄DqDq̄a∫D�a�D�a†� exp[i ∫�

0
d�∫ d3x ℒ̄],(A6b)
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where for the meson fields the MF approximation �(x) = �̄ and !�(x) = !̄0 is used. Furthermore,ℒ̄ = ℒ∗
NQ + ℒ� +ℒint with

ℒ̄NQ = ℒ∗NQ + �∗ †(x) (x) + �∗Qqa†(x)qa(x), (A7a)

ℒ∗NQ =  ̄(x)[i
�)� −m∗N]  (x) + q̄(x)[i
�)� −m∗Q] q(x), (A7b)

where

m∗N = mN − g��̄ , m∗
Q = mQ −

1
3g��̄, (A8a)

�∗N = �N − g!!̄0 , �∗Q = �Q −
1
3g!!̄0. (A8b)

The terms in ℒ� + ℒint are schematically, apart from an overall factor �̄23,
ℒ� + ℒint ∼ �†��� − �†�B� − B†��� = (�� − B�)†(�� − B�) − B†�B�, (A9)

with B� = [ ̄(x)
5
�q(x)]∕(ℏc)2. The integration over the di-quark fields gives in the exponential ofZG the term
−�̄23 B†�B� = −�̄23( ̄
5
�q)(q̄
5
� ) = −�̄23[−( ̄ )(q̄q)
−12( ̄


� )(q̄
�q) − 1
2( ̄
5


� )(q̄
5
�q) + ( ̄
5 )(q̄
5q)], (A10)

where �̄3 ≡ �3∕(ℏc), and in the form of the r.h.s. the Fierz-identities are used.
In ZG the Lagrangian now becomes ℒ̄ = ℒ̄N + ℒ̄Q + ℒ̄′int with

ℒ̄′ints = −�̄23 B
†�B� = −�̄23

(
 ̄
5
�q)(q̄
5
� ). (A11)

In the ground state translation-, rotation- and parity-invariance for homegeneous nucleon and quark
matter, the MF-approximation leads to

⟨( ̄
5
�q)(q̄
5
� )⟩ = −
⟨
 ̄ 

⟩⟨
q̄q
⟩
− 1
2
⟨
 † 

⟩⟨
q†q

⟩
= −�s(N)�s(Q) − 1

2�N�Q ≡ −�NQ, (A12)

and the partition function becomes

ZG = exp
[
�V

(
−12m

2
��̄2 +

1
2m

2
!!̄20 − �̄23�NQ

)] ∫D D ̄DqDq̄a exp[∫�

0
d�∫ d3x ℒ̄N,Q]

≡ exp
[
�V

(
−12m

2
��̄2 +

1
2m

2
!!̄20 + �̄23�NQ

)]
ZG(NQ), (A13)

with ZG(NQ) = ZG,N ZG,Q.
The contribution of the N ↔ 3Q interaction to the pressure density is

pint = �̄23�NQ = +�̄23 [�s(N)�s(Q) + 1
2�N�Q] , (A14a)

�̄23 → 
D �̄
2
3, 
D = [1 − exp {−
1(�N∕�D − 1)}] �(�N − �D). (A14b)

Here 
D(�N) describes the transition between the confined and the deconfined phase. The contribution
to the energy density is �int → −kBT ()∕)V) lnZint = −�̄23�NQ. So, the �3-coupling lowers the energy and
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�


; q
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N, p

FIG. 6: Diquark-Quark-Nucleon Vertex

increases the pressure.

WithmN,Q ≡ m∗N,Q and �N,Q ≡ �∗N,Q the pressure, energy, entropy, and particle densities are

pFG(N + Q) = T

V
lnZFG(N + Q) = T

∑
i=N,Q

∫∞
d3p

(2�)3 ln
(1 + e−�(!i−�i)) , (A15a)

�FG(N + Q) = ∑
i=N,Q

∫∞
d3p
(2�)3

!i
e�(!i−�i) + 1 , (A15b)

sFG(N + Q) = (1∕T) ∑
i=N,Q

∫∞
d3p

(2�)3
(!i − �i)

e�(!i−�i) + 1 + lnZFG(N) + lnZFG(Q), (A15c)

nFG(N + Q) = ∑
i=N,Q

∫∞
d3p

(2�)3
1

e�(!i−�i) + 1 . (A15d)

The energy densities are

�N = − 1
V

) lnZN
)� + �∗NNNV , �Q = − 1V

) ln ZQ)� + �∗QNQV . (A16)

The MF-contribution from the mesons andN → 3Q to the entropy density is smesons + sint = 0.
Chemical equilibrium requires �N = 3�Q or EF,N = 3EF,Q, which implies for the CQM thatkF,N = 3kF,Q. Using �N = 
N[k3F,N∕(6�2)] and �Q = 
Q[k3F,Q∕(6�2)] gives the relation �Q∕�N =
(
Q∕
N)(kF,Q∕kF,N)3. Considering neutron matter and symmetric u,d quark matter one has 
N =2, 
Q = 6, so that �Q∕�N = 2∕9.
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Varying the �̄ and !̄0, the equilibrium configuration is attained when P is an extremum.
So

�̄ = −( g�m2�
) )PFG)m∗N

= −( g�
3m2�

) )PFG)m∗Q
, (A17a)

!̄0 = ( g!m2!
) )PFG)�∗N = ( g!

3m2!
) )PFG)�∗Q , (A17b)

using the CQM wherem∗M = 3m∗Q and �∗N = 3�∗Q. Also
!̄0 = g!

m2!
n, �̄ = g�

m2�
ns, (A18)

where

ns = 
n∫ d3p
(2�)3

m∗NE∗N ([e�(E∗N−�∗N) + 1]−1 + [e�(E∗N+�∗N) + 1]−1) , (A19)

with E∗N =√p2 +m∗2N . The equation (A18) is the well known self-consistent equation to
be solved form∗N, as can be seen from the alternative formm∗N = mN − (g2�∕m2�) ns .

Appendix B: Diquark Feynman Propagator

The diquark field Feynman propagator is

i(∆F)��(x′ − x) = (0|��(x′)�†�(x)|0) �(t′ − t) + (0|�†�(x)�†�(x′)|0) �(t − t′) (B1)

where the diquark fields are

��(x) = qb(x)C
�qc(x) fabc , �†�(x) = q̄a(x)xC
�C q̄b(x) fabc (B2)

where the Dirac indices are contracted, and C is the charge conjugation Dirac matrix which satisfiesC−1
�C = −
T� [4]. Suppressing the color indices, the plane wave expansion of the quark field, see e.g.
[4], reads

q(x) = ∑
s
∫ d3p

(2�)3∕2
√mEp

[b(p, s) u(p, s) e−ip.x + d†(p, s) v(p, s) eip.x] . (B3)

The annihilation and creation operators b(p, s) and d†(p, s) satisfy the anti-commutation relations{b(p, s), b†(p′, s′)} = �s,s′ �(3)(p − p′) etc.
1. Convolution product di-quark field: First we consider the convolution form of the di-quark field

��(x) =∫ d4y q(y) C 
� q(x − y) (B4)
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Using the notation d3p̃ ≡ [d3p∕(2�)3∕2]√m∕Ep, the vacuum expectations become

(0|��(x′) �†�(x)|0) =∫ d4y∫ d4z ∑
s,r,s′,r′

∫ d3p̃ ∫ d3p̃′ ∫ d3q̃ ∫ d3q̃′
(0| [bp,s up,se−ip⋅y + d†p,svp,seip⋅y] C
� [bp′,s′up′,s′e−ip′⋅(x′−y) + d†p′,s′vp′,s′eip′⋅(x′−y)

]
⋅

× [b†ūq,re−iq⋅(x−z) + dq,rv̄q,reiq⋅(x−z)] 
�C [b†q′,r′ūq′ ,r′e−iq′⋅z + dq′,r′ v̄q′,r′eiq′⋅z] |0). (B5)

The non-vanishing vacuum expectation values are

(0|bp,sbp′,s′b†q,rb†q′,s′|0) = �s′,r�3(p′ − q) �s,r′�3(p − q′) − �s′,r′�3(p′ − q′)�s,r�3(p − q), (B6)

(0|d†p,sd†p′,s′dq,rdq′,s′|0) = �s′,r�3(p′ − q) �s,r′�3(p − q′)i − �s′,r′�3(p′ − q′)�s,r�3(p − q). (B7)

The d4y and d4z integrations leads to the expression
(0|��(x′) �†�(x)|0)1 = (2�)8 ∑

s,r,s′,r′
∫ d3p̃ ∫ d3p̃′ ∫ d3q̃ ∫ d3q̃′

×[[up,sC 
�up′,s′] [ūq,r 
� C ūq′,r′] �4(p − p′)�4(q − q′) e−ip⋅x′eiq⋅x ⋅
[�s′,r�3(p′ − q) �s,r′�3(p − q′) − �s′,r′�3(p′ − q′)�s,r�3(p − q)] =
(2�)8 ∑

s,r,s′,r′
∫ d3p

(2�)3
mEp ∫ d3q

(2�)3
mEq e−ip⋅(x

′−x) �3(p − q) ⋅
×{[up,sC 
�up,s′] [ūq,r
�C ūq,r′]�s′r�sr′ − [up,sC 
�up,s′] [ūq,r
�C ūq,r′]�s′r′�sr} =
(2�)8∑

s,r
∫ d3p

(2pi)3
mEp ∫ d3q

(2�)3
mEq e−ip⋅(x

′−x) �3(p − q) ⋅
×{[up,sC 
�up,r] [ūq,r
�C ūq,s]− [up,sC 
�up,r] [ūq,s
�C ūq,r]} =
(2�)8∑

s,r
∫ d3p

(2�)6 ( mEp )
2

e−ip⋅(x′−x) ⋅
×{[up,sC 
�up,r] [ūp,r
�C ūp,s]− [up,sC 
�up,r] [ūp,s
�C ūp,r]}. (B8)

Now,

uT(p, s) = −v̄(p, s) C , ūT(p, s) = C−1v(p, s) (B9)

which gives [uTp,sC
�up,r] = +[v̄(p, s)
�u(p, r)] , [ūp,r
�C ūp,s] = +[ūp,r
�vp,s]
leading to

(0|��(x′) �†�(x)|0)1 = (2�)8 ∑
s,r,s′,r′

(2�)8∑
s,r
∫ d3p

(2�)6 (mEp )
2

e−ip⋅(x′−x) ⋅
×{[v̄p,s
�up,r] [ūp,r
�vp,s]− [v̄p,s
�up,r] [ūp,s
�vp,r]} = 0. (B10)
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This follows from derivation of the Gordon-decomposition for [ūp,s
�vp,r] = 0 and [v̄p,s
�up,r] = 0 !
2. Normal product di-quark field: With the di-quark field ��(x) as defined in (B2) we have instead
of

(0|��(x′) �†�(x)|0) = ∑
s,r,s′,r′

∫ d3p̃ ∫ d3p̃′ ∫ d3q̃ ∫ d3q̃′
(0| [bp,s up,se−ip⋅x′ + d†p,svp,seip⋅x′] C
� [bp′,s′up′,s′e−ip′⋅x′ + d†p′,s′vp′,s′eip′⋅x′

]
⋅

× [b†ūq,re−iq⋅x + dq,rv̄q,reiq⋅x] 
�C [b†q′,r′ūq′,r′e−iq′⋅x + dq′,r′ v̄q′,r′eiq′⋅x] |0). (B11)

Restriction to the non-vanishing vacuum expectationa in (B7) we have

(0|��(x′) �†�(x)|0) = ∑
s,r,s′,r′

∫ d3p̃ ∫ d3p̃′ ∫ d3q̃ ∫ d3q̃′
[(0|bp,sbp′,s′b†q,rb†q′,s′|0) [up,sC
�up′,s′][ūq,r
�Cūq′,r′]e−i(p+p′)⋅x′e−i(q+q′)⋅x
+(0|d†p,sd†p′,s′dq,rdq′,s′|0) [vp,sC
�vp′,s′][v̄q,r
�Cv̄q′,r′]e+i(p+p′)⋅x′e+i(q+q′)⋅x] (B12)

Next we use

∫ d3p
(2�)3Ep =∫ d4p

(2�)4 �(p2 −m2Q)�(p0) ≡ ∫ d4p̃,
and arrive at the expression

(0|��(x′) �†�(x)|0) = ∑
s,r,s′,r′

∫ d4p̃ ∫ d4p̃′ ∫ d4q̃ ∫ d4q̃′

[(0|bp,sbp′,s′b†q,rb†q′,s′|0) [up,sC
�up′,s′][ūq,r
�Cūq′,r′]e−i(p+p′)⋅x′e−i(q+q′)⋅x
+(0|d†p,sd†p,s′dq,rdq,s′|0) [vp,sC
�vp,s′][v̄q,r
�Cv̄q,r′]e+i(p+p′)⋅x′e+i(q+q′)⋅x] (B13)

Then, the first term in (B11) gives the contribution

(0|��(x′) �†�(x)|0)1 = ∑
s,r,s′,r′

∫ d4p̃ ∫ d4p̃′ ∫ d4q̃ ∫ d4q̃′ e−i(p+p′)⋅x′e+i(q+q′)⋅x ⋅
×[[up,sC 
�up′,s′] [ūq,r 
� C ūq′,r′][�s′,r�4(p′ − q) �s,r′�4(p − q′) − �s′,r′�4(p′ − q′)�s,r�4(p − q)] =
∑

s,r,s′,r′
∫ d4p̃ ∫ d4q̃ e−i(p+q)⋅(x′−x){�s,r′�s′,r[v̄p,s
�uq,s′] [ūq,r 
� vp,r′]

−�s′,r′�s,r[v̄p,s
�uq,s′] [ūp,r 
� vq,r′]} (B14)

Similarly, for the second term in (B11) we obtain

(0|��(x′) �†�(x)|0)2 = ∑
s,r,s′,r′

∫ d4p̃ ∫ d4q̃ e−i(p+q)⋅(x′−x){�s,r′�s′,r[ūp,s
�uq,s′] [v̄q,r 
� up,r′]
−�s′,r′�s,r[ūp,s
�vq,s′] [v̄p,r 
� uq,r′]} (B15)
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From the Gordon decomposition derivation one gets
[ūp,r 
� vq,r′] = 0 !

Remark: This why a photon does not couple to pairs, unless there is an additional interaction with
another system like for example a nucleus with charge Ze.

3. Conclusion: (∆F)��(x′−x) = 0 : The di-quarkdoes not propagate. Only a contact interaction
between a nucleon and a quark is possible!

Appendix C: Exchange Potentials

In this section we follow our multi-channel description formalism in the treatment of the exchange
potentials [6, 8]. In thias appendix we give a detailed treatment for ΛN matrix elements, which can
transcribed directly to the QN matrix elements. K-exchange for ΛN → NΛ corresponds to di-quark
exchange for QN → NQ.
In the case of the anti-symmetric spin-orbit the exchange potential requires some attention, because
their special features. The potentials in configuration space are described in Pauli-spinor space as fol-
lows

V = VC + V��1 ⋅ �2 + VT S12 + VSLS L ⋅ S+ + VALS L ⋅ S− + VQ Q12 . (C1)

Here, the definition of the matrix elements of the spin operators are defined as follows(�†m′(Λ)�†n′(N)|�1 ⋅ �2|�†m(Λ)�†n(N)) ≡ (�†m′(Λ)|�1|�†m(Λ)) ⋅ (�†n′(N)|�1|�†n(N)) , (C2)

and similarly for the SU(2) and SU(3) operator matrix elements. In Fig. 7 the labels (m,n,m′, n′) refer
to the spin, and the labels (�, �, �′, �′) refer to unitary spin, like SU(2) or SU(3). The momenta on line
1 are p and p′ for respectively the initial and the final state. Likewise, the momenta on line 2 are −p
and −p′ for respectively the initial and the final state.

m, � �

m’, �′ N n’, �′�

n, �N

1 2

FIG. 7: Particle- and spin-exchange for ΛN

In graph Fig. 7 we encounter the matrix elements

(�1)m′,m = (�†m′(N)|�1|�†m(Λ)) , (�2)n′,n = (�†n′(Λ)|�2|�†n(N)) (C3)
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1. Spin-Exchange Potentials

In order to project the exchange potentials on the forms in (C1) we have to rewrite these matrix
elements in terms of those occurring in (C2). This can be done using the spin-exchange operator P�:

P� = 12 (1 + �1 ⋅ �2) . (C4)

Properties of this operator are

P�† = P� , P2� = 1 ,
P� �1,m�2,n = �1,n�2,m ,
P� �1,k P� = �2,k ,P� �2,k P� = �1,k .

Similar properties hold for the flavor-exchange operator Pf , but then for the SU(2) isospin operators
�k, or the SU(3) octet operators �k.
In the following we make only explicit the spin labels, but similar operations apply to the SU(2) or
SU(3) labels.

Using this spin-exchange operator, we find that

(
�†1,m′(N)�†2,n′(Λ)|�1 ⊗ 12 − 11 ⊗ �2|�†1,m(Λ)�†2,n(N)) =
(�†2,n′(N)�†1,m′(Λ)|P†� (�1 ⊗ 12 − 11 ⊗ �2)P� P�|�†1,m(Λ)�†2,n(N)) =
− (�†1,m′(Λ)�†1,n′(N)| (�1 ⊗ 12 − 11 ⊗ �2) P�|�†1,m(Λ)�†2,n(N)) . (C5)

above, we added the subscripts 1 and 2 to indicate explicitly the baryon line that is involved.

2. Spin- and Strangeness-Exchange Potentials

In addition to the spin-exchange, we also have the flavor-exchange operator Pf active here. So, in
total we have to apply −P� Pf = Px, i.e. the space-exchange operator. This latter relation follows from
the anti-symimetry of the two-baryon states, which implies that only states with PfP�Px = −1 are
physical. All this implies

1. For the ALS-potential derived in K-exchange etc. one has in (C1), considering both spin- and flavor-
exchange, the operator

ALS ⇒ 12 (�1 − �2) ⋅ L Px (C6)

2. For the SLS-potential derived in K-exchange etc. one has in (C1), considering both spin- and flavor-
exchange, the operator PfP�, but since

�1 ⋅ �2 �1,k = �2,k + i�klm �1,l�2,m ,�1 ⋅ �2 �2,k = �1,k + i�klm �2,l�1,m ,
one derives easily that

P� (�1 + �2) ⋅ L = (�1 + �2) ⋅ L , (C7)
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and therefore, similarly to (C5) we have, with the inclusion of the flavor labels,

(�†1,m′�′(N)�†2,n′�′(Λ)|�1 ⊗ 12 + 11 ⊗ �2|�†1,m�(Λ)�†2,n�(N)) =
(�†2,n′�′(N)�†1,m′�′(Λ)|P†fP†� (�1 ⊗ 12 + 11 ⊗ �2) |�†1,m�(Λ)�†2,n�(N)) =(�†1,m′�′(Λ)�†1,n′�′(N)| (�1 ⊗ 12 + 11 ⊗ �2) Pf|�†1,m�(Λ)�†2,n�(N)) . (C8)

So, for the SLS-potential derived in K-exchange etc. one has in (C1), considering both spin- and flavor-
exchange, the operator

SLS ⇒ 12 (�1 + �2) ⋅ L Pf (C9)

This treatment for the SLS-potential also applies to the central-, spin-spin-, tensor-, and quadratic-
spin-orbit potentials as well, of course.

We conclude this section by noticing that we have found, using ourmulti-channel set-up the same prescrip-
tions for the treatment of the flavor-exchange potentials as in [6]. For the treatment of the ALS-potential
for S = ±1-exchange, our prescription here is more clear. For example in the case of the coupled 1P1 −3 P1
system our prescription is unambiguous, and given by the Px-operator, which is the same for both partial-
waves coupled in this case.
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FIG. 8: K- and K∗-exchange time-ordered graphs (a) and (b).
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Appendix D: Gaussian-Fourier

∫ d3k
(2�)3 eik⋅re−k2∕Λ2 = m3

�√� m3 exp(−m2r2), (D1a)

∫ d3k
(2�)3 kikj eik⋅re−k2∕Λ2 = 2m5

�√�
(�ij − 12(mr)2 r̂i r̂j) exp(−m2r2), (D1b)

∫ d3k
(2�)3k2 eik⋅re−k2∕Λ2 = 2m5

�√�
(3 − 2m2r2) exp(−m2r2), (D1c)

∫ d3k
(2�)3�1 ⋅ k �2 ⋅ k eik⋅re−k2∕Λ2 = 2m5

�√�
(�1 ⋅ �2 − 2m2r2�1 ⋅ r̂�2 ⋅ r̂) exp(−m2r2)

= 2m5

�√� [(1 − 23m2r2) �1 ⋅ �2 − 23(m2r2) S12] exp(−m2r2), (D1d)

∫ d3k
(2�)3 [�1 ⋅ k �2 ⋅ k − 13k2�1 ⋅ �2] eik⋅re−k2∕Λ2 = − 2m5

�√� 23(mr)2 exp(−m2r2) S12, (D1e)

∫ d3k
(2�)3 eik⋅r iS ⋅ (q × k)e−k2∕Λ2 = 2m5

�√� exp(−m2r2) L ⋅ S, (D1f)

wherem = Λ∕2.
∫ d3k

(2�)3 eik⋅re−k2∕Λ2 = Λ3
8�√� exp(−14Λ2r2), (D2a)

∫ d3k
(2�)3 kikj eik⋅re−k2∕Λ2 = Λ5

16�√� (�ij − 1
8(Λr)2 r̂i r̂j) exp(−14Λ2r2), (D2b)

∫ d3k
(2�)3k2 eik⋅re−k2∕Λ2 = Λ5

16�√�
(
3 − Λ2r2∕2) exp(−14Λ2r2), (D2c)

∫ d3k
(2�)3 [�1 ⋅ k �2 ⋅ k − 1

3k
2�1 ⋅ �2] eik⋅re−k2∕Λ2 = − Λ5

16�√� 16(Λr)2 exp(−14Λ2r2) S12, (D2d)
∫ d3k

(2�)3 eik⋅r [iS ⋅ (q × k)] e−k2∕Λ2 = Λ5

16�√� exp(−14Λ
2r2) L ⋅ S, (D2e)

Acknowledgments

I am very grateful to prof. Yasuo Yamamoto for our longtime close collaboration on the baryon and
quark interactions.

21



[1] Y. Yamamoto, N. Yasutake, and Th.A. Rijken, Phys. Rev. C 105 (2022), 015804.
[2] B.L. Ioffe, Nucl. Phys. B 188 (1981), 317; B.L. Ioffe and A.V. Smilga, Nucl. Phys. B 232 (1984), 109.
[3] Th.A. Rijken, Extended Relativistic Mean Field Theory, Nuclear, Neutron, Quark and Di-quark Matter, Un-

published.
[4] J.D. Bjorken and S.D. Drell, I. Relativistic QuantumMechanics and II. Relativistic Quantum Fields, McGraw-

Hill Publishing Company (1965).
[5] M.M. Nagels, Th.A. Rijken, and J.J. de Swart, Phys. Rev. D 17 (1978), 76.
[6] M.M. Nagels, Th.A. Rijken, and J.J. de Swart, Phys. Rev. D 15 (1977). 2547.
[7] Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007.
[8] Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044008.
[9] Th.A. Rijken, M.M. Nagels, and Y. Yamamoto, Progress of Theoretical Physics, Suppl. 185 (210), 14.
[10] N.K. Glendenning, Compact stars: nuclear physics, particle physics, and general relativity, Springer-Verlag,

New York (1997).
[11] J.I. Kapusta and C. Gale, Finite-Temperature Field Theory. Principles and Applications, Cambridge Univer-

sity Press, Cambridge, England (1989).
[12] C.M. Bender and F. Cooper, Ann. of Phys. (N.Y.) 109 (1977), 165-209. In this paper is treated in detail the

�4-theory with the auxiliary field method for composite fields. We apply this here in a similar manner for
the di-quark field.

[13] Th.A. Rijken andY. Yamamoto,Extended-soft-coreQuark-QuarkModel, Constituent QuarkMeson-exchange
Interactions, January 2022, Report THEF-NIJM 20.06, https://nn-online.org/eprints.

[14] Th.A. Rijken, M.M. Nagels and Y. Yamamoto, Prog. Theor. Phys., Suppl. 185 (2010) 15.
[15] M. Abramowitz and I.A. Stegun, editors, Handbook of Mathematical Functions, Dover Publications Inc.,

New York (1970).
[16] T. Fischer et al, Quark deconfinement as supernova explosion engine for massive blue-supergiant stars,

arXiv:1712.08788 [astro-ph.HE] (2018).
[17] Th.A. Rijken, Di-quark-exchange potential Energy in Neutron Star. Mixed Neutron and Quark matter.,

November 2023. http://nn-online.org/eprints.
[18] J. Wilson, in Ninth Texas Symp. on relativistic astrophysics, Proc. NY Acad. Sci., 336 (1980), 358.
[19] G.E. Brown, H.A. Bethe, and Gordon Baym, Nucl. Phys. A 375 (1982), 481.

22


